批归一化的问题
回到本文的动机,在许多情况下,批归一化可能会影响性能或者根本不起作用。
使用小的batch sizes时不稳定
如上所述,批归一化层必须计算均值和方差,以便对整个batch的前一个输出进行归一化。
ResNet-50的批归一化验证误差
上面是ResNet-50的验证误差图。如果batch size保持为32,那么最终验证误差将在23左右,并且随着batch size的减小,误差会不断减小(batch size不能为1,因为它本身就是均值)。损失有很大的不同(大约10%)。
如果小batch size是一个问题,为什么我们不使用更大的batch size呢?实际上,我们不能在每种情况下都使用较大的batch size。在进行微调时,我们不能使用大的batch size,以避免使用大梯度伤害我们的模型。在分布式训练中,大的batch size最终将作为一组小的batch sizes分布在实例中。
会导致训练时间增加
NVIDIA和卡耐基梅隆大学进行的实验结果表明,“即使批归一化不占用大量计算资源,但收敛所需的总迭代次数却减少了。每次迭代的时间可能会显著增加”,并且随着batch size的增加,训练时间可能进一步增加。
使用Titan X Pascal在ImageNet上的ResNet-50训练时间分布
如您所见,批归一化消耗了总训练时间的1/4。原因是因为批归一化要求对输入数据进行两次迭代:一次用于计算batch统计信息,另一次用于对输出进行归一化。
在测试/推断阶段不稳定
例如,考虑实际应用程序:“对象检测”。在训练对象检测器时,我们通常使用大的batch size(默认情况下,YOLOv4和Faster-RCNN都以batch size= 64进行训练)。但是在将这些深度学习模型投入生产后,这些模型并不像训练时那么有效。这是因为它们是用大的batch size进行训练的,而在实时情况下,它们得到的batch size等于1,因为它必须处理每一帧。如前所述,当使用batch size为1时,它本身就是均值,因此归一化层将无法有效地处理所谓的“内部协变移位”。
不利于在线学习
与batch学习相比,在线学习是一种学习技术,通过依次(或单独地,或通过称为mini-batches的small groups)向系统提供数据实例,对系统进行增量式训练。每一个学习步骤既快速又廉价,因此系统可以在新数据到达时动态地学习新数据。
典型的在线学习管道
由于它依赖于外部数据源,数据可以单独到达,也可以成批到达。由于每次迭代中batch size的变化,它不能很好地概括输入数据的规模和shift,这最终会影响性能。
不适用于循环神经网络
在卷积神经网络中,尽管批归一化可以显著提高训练速度和泛化能力,但事实证明,它们很难应用于循环体系结构。批归一化可以应用于RNN的堆栈之间,其中归一化是“垂直”应用(即每个RNN的输出),但是它不能“水平”应用(即在时间步之间),因为重复的rescaling会导致梯度爆炸。
备选方案
在无法进行批归一化的情况下,可以使用以下几种替代方法:
层归一化。
实例归一化。
组归一化(+权重标准化)。
同步批归一化。
最后
批归一化尽管是深度学习开发中的一个里程碑技术,但是它仍会有一些问题,这表明归一化技术仍有改进的空间。