热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Pandas重建索引

重新索引会更改DataFrame的行标签和列标签。重新索引意味着符合数据以匹配特定轴上的一组给定的标签。可以通过索引来实现多个操作-重新排序现有数据以匹配一组新的标签。在没有标签数

重新索引会更改DataFrame的行标签和列标签。重新索引意味着符合数据以匹配特定轴上的一组给定的标签。

可以通过索引来实现多个操作 -

  • 重新排序现有数据以匹配一组新的标签。
  • 在没有标签数据的标签位置插入缺失值(NA)标记。

示例

import pandas as pd
import numpy as np N=20 df = pd.DataFrame({ 'A': pd.date_range(start='2016-01-01',periods=N,freq='D'), 'x': np.linspace(0,stop=N-1,num=N), 'y': np.random.rand(N), 'C': np.random.choice(['Low','Medium','High'],N).tolist(), 'D': np.random.normal(100, 10, size=(N)).tolist() }) #reindex the DataFrame df_reindexed = df.reindex(index=[0,2,5], columns=['A', 'C', 'B']) print (df_reindexed)

Python

执行上面示例代码,得到以下结果 -

A C B
0 2016-01-01 Low NaN
2 2016-01-03 High NaN
5 2016-01-06 Low NaN

Shell

重建索引与其他对象对齐

有时可能希望采取一个对象和重新索引,其轴被标记为与另一个对象相同。 考虑下面的例子来理解这一点。

示例

import pandas as pd
import numpy as np df1 = pd.DataFrame(np.random.randn(10,3),columns=['col1','col2','col3']) df2 = pd.DataFrame(np.random.randn(7,3),columns=['col1','col2','col3']) df1 = df1.reindex_like(df2) print df1

Python

执行上面示例代码,得到以下结果 -

col1 col2 col3
0 -2.467652 -1.211687 -0.391761
1 -0.287396 0.522350 0.562512
2 -0.255409 -0.483250 1.866258
3 -1.150467 -0.646493 -0.222462
4 0.152768 -2.056643 1.877233
5 -1.155997 1.528719 -1.343719
6 -1.015606 -1.245936 -0.295275

Shell

注意 - 在这里,df1数据帧(DataFrame)被更改并重新编号,如df2。 列名称应该匹配,否则将为整个列标签添加NAN

填充时重新加注

reindex()采用可选参数方法,它是一个填充方法,其值如下:

  • pad/ffill - 向前填充值
  • bfill/backfill - 向后填充值
  • nearest - 从最近的索引值填充

示例

import pandas as pd
import numpy as np df1 = pd.DataFrame(np.random.randn(6,3),columns=['col1','col2','col3']) df2 = pd.DataFrame(np.random.randn(2,3),columns=['col1','col2','col3']) # Padding NAN's print df2.reindex_like(df1) # Now Fill the NAN's with preceding Values print ("Data Frame with Forward Fill:") print df2.reindex_like(df1,method='ffill')

Python

执行上面示例代码时,得到以下结果 -

col1 col2 col3
0 1.311620 -0.707176 0.599863
1 -0.423455 -0.700265 1.133371
2 NaN NaN NaN
3 NaN NaN NaN
4 NaN NaN NaN
5 NaN NaN NaNData Frame with Forward Fill:col1 col2 col3
0 1.311620 -0.707176 0.599863
1 -0.423455 -0.700265 1.133371
2 -0.423455 -0.700265 1.133371
3 -0.423455 -0.700265 1.133371
4 -0.423455 -0.700265 1.133371
5 -0.423455 -0.700265 1.133371

Shell

注 - 最后四行被填充了。

重建索引时的填充限制

限制参数在重建索引时提供对填充的额外控制。限制指定连续匹配的最大计数。考虑下面的例子来理解这个概念 -

示例

import pandas as pd
import numpy as np df1 = pd.DataFrame(np.random.randn(6,3),columns=['col1','col2','col3']) df2 = pd.DataFrame(np.random.randn(2,3),columns=['col1','col2','col3']) # Padding NAN's print df2.reindex_like(df1) # Now Fill the NAN's with preceding Values print ("Data Frame with Forward Fill limiting to 1:") print df2.reindex_like(df1,method='ffill',limit=1)

Python

在执行上面示例代码时,得到以下结果 -

col1 col2 col3
0 0.247784 2.128727 0.702576
1 -0.055713 -0.021732 -0.174577
2 NaN NaN NaN
3 NaN NaN NaN
4 NaN NaN NaN
5 NaN NaN NaNData Frame with Forward Fill limiting to 1:col1 col2 col3
0 0.247784 2.128727 0.702576
1 -0.055713 -0.021732 -0.174577
2 -0.055713 -0.021732 -0.174577
3 NaN NaN NaN
4 NaN NaN NaN
5 NaN NaN NaN

Shell

注意 - 只有第7行由前6行填充。 然后,其它行按原样保留。

重命名

rename()方法允许基于一些映射(字典或者系列)或任意函数来重新标记一个轴。
看看下面的例子来理解这一概念。

示例

import pandas as pd
import numpy as np df1 = pd.DataFrame(np.random.randn(6,3),columns=['col1','col2','col3']) print df1 print ("After renaming the rows and columns:") print df1.rename(columns={'col1' : 'c1', 'col2' : 'c2'}, index = {0 : 'apple', 1 : 'banana', 2 : 'durian'})

Python

执行上面示例代码,得到以下结果 -

col1 col2 col3
0 0.486791 0.105759 1.540122
1 -0.990237 1.007885 -0.217896
2 -0.483855 -1.645027 -1.194113
3 -0.122316 0.566277 -0.366028
4 -0.231524 -0.721172 -0.112007
5 0.438810 0.000225 0.435479After renaming the rows and columns:c1 c2 col3
apple 0.486791 0.105759 1.540122
banana -0.990237 1.007885 -0.217896
durian -0.483855 -1.645027 -1.194113
3 -0.122316 0.566277 -0.366028
4 -0.231524 -0.721172 -0.112007
5 0.438810 0.000225 0.435479

Shell

rename()方法提供了一个inplace命名参数,默认为False并复制底层数据。 指定传递inplace = True则表示将数据重命名。

 

转:https://www.cnblogs.com/navysummer/p/9641076.html



推荐阅读
  • 本文探讨了如何在给定整数N的情况下,找到两个不同的整数a和b,使得它们的和最大,并且满足特定的数学条件。 ... [详细]
  • 尽管使用TensorFlow和PyTorch等成熟框架可以显著降低实现递归神经网络(RNN)的门槛,但对于初学者来说,理解其底层原理至关重要。本文将引导您使用NumPy从头构建一个用于自然语言处理(NLP)的RNN模型。 ... [详细]
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
  • Explore how Matterverse is redefining the metaverse experience, creating immersive and meaningful virtual environments that foster genuine connections and economic opportunities. ... [详细]
  • 1.如何在运行状态查看源代码?查看函数的源代码,我们通常会使用IDE来完成。比如在PyCharm中,你可以Ctrl+鼠标点击进入函数的源代码。那如果没有IDE呢?当我们想使用一个函 ... [详细]
  • 本文详细介绍了Akka中的BackoffSupervisor机制,探讨其在处理持久化失败和Actor重启时的应用。通过具体示例,展示了如何配置和使用BackoffSupervisor以实现更细粒度的异常处理。 ... [详细]
  • 基于KVM的SRIOV直通配置及性能测试
    SRIOV介绍、VF直通配置,以及包转发率性能测试小慢哥的原创文章,欢迎转载目录?1.SRIOV介绍?2.环境说明?3.开启SRIOV?4.生成VF?5.VF ... [详细]
  • 开发笔记:2020 BJDCTF Re encode
    开发笔记:2020 BJDCTF Re encode ... [详细]
  • #点球小游戏fromrandomimportchoiceimporttimescore[0,0]direction[left,center,right]defkick() ... [详细]
  • 利用决策树预测NBA比赛胜负的Python数据挖掘实践
    本文通过使用2013-14赛季NBA赛程与结果数据集以及2013年NBA排名数据,结合《Python数据挖掘入门与实践》一书中的方法,展示如何应用决策树算法进行比赛胜负预测。我们将详细讲解数据预处理、特征工程及模型评估等关键步骤。 ... [详细]
  • QUIC协议:快速UDP互联网连接
    QUIC(Quick UDP Internet Connections)是谷歌开发的一种旨在提高网络性能和安全性的传输层协议。它基于UDP,并结合了TLS级别的安全性,提供了更高效、更可靠的互联网通信方式。 ... [详细]
  • MySQL索引详解与优化
    本文深入探讨了MySQL中的索引机制,包括索引的基本概念、优势与劣势、分类及其实现原理,并详细介绍了索引的使用场景和优化技巧。通过具体示例,帮助读者更好地理解和应用索引以提升数据库性能。 ... [详细]
  • 本文介绍了如何使用 Python 的 Bokeh 库在图表上绘制菱形标记。Bokeh 是一个强大的交互式数据可视化工具,支持丰富的图形自定义选项。 ... [详细]
  • 本文深入探讨了 Python 中的循环结构(包括 for 循环和 while 循环)、函数定义与调用,以及面向对象编程的基础概念。通过详细解释和代码示例,帮助读者更好地理解和应用这些核心编程元素。 ... [详细]
  • 深入理解Redis的数据结构与对象系统
    本文详细探讨了Redis中的数据结构和对象系统的实现,包括字符串、列表、集合、哈希表和有序集合等五种核心对象类型,以及它们所使用的底层数据结构。通过分析源码和相关文献,帮助读者更好地理解Redis的设计原理。 ... [详细]
author-avatar
葛菁昱
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有