作者:唯一的你b | 来源:互联网 | 2023-09-17 14:05
排队论模型(一):基本概念、输入过程与服务时间的常用概率分布
排队论模型(二):生灭过程 、 M / M /s 等待制排队模型、多服务台模型
排队论模型(三):M / M / s/ s 损失制排队模型
排队论模型(四):M / M / s 混合制排队模型
排队论模型(五): 有限源排队模型、服务率或到达率依赖状态的排队模型
排队论模型(六):非生灭过程排队模型、爱尔朗(Erlang)排队模型
排队论模型(七):排队系统的优化
排队论模型(八):Matlab 生成随机数、排队模型的计算机模拟
目录
1 生灭过程
2 M / M /s 等待制排队模型
2.1 单服务台模型 2.1 队长的分布
2.2 几个主要数量指标 2.3 忙期和闲期
3 与排队论模型有关的 LINGO 函数 4 多服务台模型( M / M /s/ ∞ )
1 生灭过程
一类非常重要且广泛存在的排队系统是生灭过程排队系统。生灭过程是一类特殊的随机过程,在生物学、物理学、运筹学中有广泛的应用。在排队论中,如果 N(t) 表示 时刻t 系统中的顾客数,则{N(t),t ≥ 0}就构成了一个随机过程。如果用“生”表示顾 客的到达,“灭”表示顾客的离去,则对许多排队过程来说,{N(t),t ≥ 0}就是一类特殊的随机过程-生灭过程。
下面结合排队论的术语给出生灭过程的定义。
为求平稳分布,考虑系统可能处的任一状态 n 。假设记录了一段时间内系统进入状 态n 和离开状态 n 的次数,则因为“进入”和“离开”是交替发生的,所以这两个数要么相等,要么相差为 1。但就这两种事件的平均发生率来说,可以认为是相等的。即当 系统运行相当时间而到达平衡状态后,对任一状态 n 来说,单位时间内进入该状态的平 均次数和单位时间内离开该状态的平均次数应该相等,这就是系统在统计平衡下的“流 入=流出”原理。根据这一原理,可得到任一状态下的平衡方程如下:
述公式得到平稳状态的概率分布。
2 M / M /s 等待制排队模型
2.1 单服务台模型
单服务台等待制模型 M / M /1/ ∞ 是指:顾客的相继到达时间服从参数为λ 的负指 数分布,服务台个数为 1,服务时间V 服从参数为 μ 的负指数分布,系统空间无限, 允许无限排队,这是一类最简单的排队系统。
2.1 队长的分布
2.2 几个主要数量指标
对单服务台等待制排队系统,由已得到的平稳状态下队长的分布,可以得到平均队 长
式(14)和式(15)通常称为 Little 公式,是排队论中一个非常重要的公式。
2.3 忙期和闲期
个顾客在系统内的平均逗留时间应等于服务员平均连续忙的时间。
3 与排队论模型有关的 LINGO 函数
(1)@peb(load,S) 该函数的返回值是当到达负荷为 load,服务系统中有 S 个服务台且允许排队时系 统繁忙的概率,也就是顾客等待的概率。
(2)@pel(load,S) 该函数的返回值是当到达负荷为 load,服务系统中有 S 个服务台且不允许排队时 系统损失概率,也就是顾客得不到服务离开的概率。
(3)@pfs(load,S,K) 该函数的返回值是当到达负荷为 load,顾客数为 K,平行服务台数量为 S 时,有限 源的 Poisson 服务系统等待或返修顾客数的期望值。
例 1 某修理店只有一个修理工,来修理的顾客到达过程为 Poisson 流,平均 4 人 /h;修理时间服从负指数分布,平均需要 6min。试求:(1)修理店空闲的概率;(2) 店内恰有 3 个顾客的概率;(3)店内至少有 1 个顾客的概率;(4)在店内的平均顾客数; (5)每位顾客在店内的平均逗留时间;(6)等待服务的平均顾客数;(7)每位顾客平 均等待服务时间;(8)顾客在店内等待时间超过 10min 的概率。
编写 LINGO 程序如下:
model:
s=1;lamda=4;mu=10;rho=lamda/mu;
Pwait=@peb(rho,s);
p0=1-Pwait;
Pt_gt_10=@exp(-1);
end
4 多服务台模型( M / M /s/ ∞ )
设顾客单个到达,相继到达时间间隔服从参数为λ 的负指数分布,系统中共有 s 个 服务台,每个服务台的服务时间相互独立,且服从参数为 μ 的负指数分布。当顾客到 达时,若有空闲的服务台则马上接受服务,否则便排成一个队列等待,等待时间为无限。
公式(19)和式(20)给出了在平衡条件下系统中顾客数为 n 的概率,当 n ≥ s 时,即 系统中顾客数大于或等于服务台个数,这时再来的顾客必须等待,因此记
式(21)称为 Erlang 等待公式,它给出了顾客到达系统时需要等待的概率。 对多服务台等待制排队系统,由已得到的平稳分布可得平均排队长 Lq 为:
对多服务台系统,Little 公式依然成立,即有
例 2 某售票处有 3 个窗口,顾客的到达为 Poisson 流,平均到达率为 λ = 0.9人/ min ;服务(售票)时间服从负指数分布,平均服务率 μ = 0.4人/ min 。 现设顾客到达后排成一个队列,依次向空闲的窗口购票,这一排队系统可看成是一个
M / M / s/ ∞ 系统,其中
求解的 LINGO 程序如下:
model:
s=3;lamda=0.9;mu=0.4;rho=lamda/mu;rho_s=rho/s;
P_wait=@peb(rho,s);
p0=6*(1-rho_s)/rho^3*P_wait;
L_q=P_wait*rho_s/(1-rho_s);
L_s=L_q+rho;
W_q=L_q/lamda;
W_s=L_s/lamda;
end
排队论模型(一):基本概念、输入过程与服务时间的常用概率分布
排队论模型(二):生灭过程 、 M / M /s 等待制排队模型、多服务台模型
排队论模型(三):M / M / s/ s 损失制排队模型
排队论模型(四):M / M / s 混合制排队模型
排队论模型(五): 有限源排队模型、服务率或到达率依赖状态的排队模型
排队论模型(六):非生灭过程排队模型、爱尔朗(Erlang)排队模型
排队论模型(七):排队系统的优化
排队论模型(八):Matlab 生成随机数、排队模型的计算机模拟