热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

【Paddle打比赛】产品评论观点提取竞赛baseline

资源⭐⭐⭐欢迎点个小小的Star支持!⭐⭐⭐开源不易,希望大家多多支持~更多CV和NLP中的transformer模型(BERT、ERNIE、ViT
资源

⭐ ⭐ ⭐ 欢迎点个小小的Star支持!⭐ ⭐ ⭐

开源不易,希望大家多多支持~

2. 飞桨PaddleEdu技术交流群(QQ)

目前QQ群已有2000+同学一起学习,欢迎扫码加入


推荐阅读
  • 视觉Transformer综述
    本文综述了视觉Transformer在计算机视觉领域的应用,从原始Transformer出发,详细介绍了其在图像分类、目标检测和图像分割等任务中的最新进展。文章不仅涵盖了基础的Transformer架构,还深入探讨了各类增强版Transformer模型的设计思路和技术细节。 ... [详细]
  • 我整理了HMOV四大5G旗舰的参数,可依然没能拯救我的选择困难症
    伊瓢茕茕发自凹非寺量子位报道|公众号QbitAI报道了那么多发布会,依然无法选出要换的第一部5G手机。这不,随着华为P40系列发布,目前国 ... [详细]
  • 分层学习率衰减在NLP预训练模型中的应用
    本文探讨了如何通过分层学习率衰减技术来优化NLP预训练模型的微调过程,特别是针对BERT模型。通过调整不同层的学习率,可以有效提高模型性能。 ... [详细]
  • 在2019中国国际智能产业博览会上,百度董事长兼CEO李彦宏强调,人工智能应务实推进其在各行业的应用。随后,在“ABC SUMMIT 2019百度云智峰会”上,百度展示了通过“云+AI”推动AI工业化和产业智能化的最新成果。 ... [详细]
  • 如何使用 net.sf.extjwnl.data.Word 类及其代码示例详解 ... [详细]
  • 2019年斯坦福大学CS224n课程笔记:深度学习在自然语言处理中的应用——Word2Vec与GloVe模型解析
    本文详细解析了2019年斯坦福大学CS224n课程中关于深度学习在自然语言处理(NLP)领域的应用,重点探讨了Word2Vec和GloVe两种词嵌入模型的原理与实现方法。通过具体案例分析,深入阐述了这两种模型在提升NLP任务性能方面的优势与应用场景。 ... [详细]
  • 如何在jieba分词中加自定义词典_常见中文分词包比较
    1jiebajieba.cut方法接受三个输入参数:需要分词的字符串;cut_all参数用来控制是否采用全模式;HMM参数用来控制是否使用HMM模型ji ... [详细]
  • 本文将详细探讨 Java 中提供的不可变集合(如 `Collections.unmodifiableXXX`)和同步集合(如 `Collections.synchronizedXXX`)的实现原理及使用方法,帮助开发者更好地理解和应用这些工具。 ... [详细]
  • 一个登陆界面
    预览截图html部分123456789101112用户登入1314邮箱名称邮箱为空15密码密码为空16登 ... [详细]
  • 洞态IAST Java Agent 实现AOP技术详解
    本文深入探讨了洞态IAST Java Agent如何通过AOP技术实现方法调用链和污点值传播等功能,为读者提供了详细的源码分析。 ... [详细]
  • 编程实践:创建抽奖游戏
    本文详细介绍了如何通过HTML、CSS和JavaScript构建一个简单的在线抽奖游戏,包括布局设计、样式设置和交互逻辑实现。 ... [详细]
  • 数据集成策略:ETL与ELT架构对比及工具选择
    随着企业信息化的深入发展,‘数据孤岛’问题日益突出,阻碍了数据的有效利用与整合。本文探讨了如何通过构建数据仓库解决这一问题,重点分析了ETL与ELT两种数据处理架构的特点及适用场景,为企业选择合适的ETL工具提供了指导。 ... [详细]
  • 在 Kubernetes 中,Pod 的调度通常由集群的自动调度策略决定,这些策略主要关注资源充足性和负载均衡。然而,在某些场景下,用户可能需要更精细地控制 Pod 的调度行为,例如将特定的服务(如 GitLab)部署到特定节点上,以提高性能或满足特定需求。本文深入解析了 Kubernetes 的亲和性调度机制,并探讨了多种优化策略,帮助用户实现更高效、更灵活的资源管理。 ... [详细]
  • 步入人工智能新时代,掌握这些关键知识点至关重要。AI技术将成为人类的重要辅助工具,不仅能够扩展和增强人类的智能,还能帮助我们实现更加卓越的成就。新一代人工智能技术的发展将为各行各业带来深远的影响,推动社会进步与创新。 ... [详细]
  • 本文通过复旦大学自然语言处理课程中的一个具体案例,详细解析了中文词汇分割技术的实现方法。该案例利用Java编程语言,结合词典和算法模型,展示了如何高效地进行中文文本的词汇分割,为相关研究和应用提供了宝贵的参考。 ... [详细]
author-avatar
潇洒树春不_970
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有