热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

深入解析OpenCV2中Mat对象的类型、深度与步长属性

在OpenCV2中,`Mat`类作为核心组件,对于图像处理至关重要。本文将深入探讨`Mat`对象的类型、深度与步长属性,这些属性是理解和优化图像操作的基础。通过具体示例,我们将展示如何利用这些属性实现高效的图像缩小功能。此外,还将讨论这些属性在实际应用中的重要性和常见误区,帮助读者更好地掌握`Mat`类的使用方法。

在OpenCV2中Mat类无疑使占据着核心地位的,前段时间初学OpenCV2时对Mat类有了个初步的了解,见OpenCV2:Mat初学。这几天试着用OpenCV2实现了图像缩小的两种算法:基于等间隔采样和基于局部均值的图像缩小,发现对Mat中的数据布局和一些属性的认知还是懵懵懂懂,本文对Mat的一些重要属性和数据布局做一个总结。

 

Mat的作用

The class Mat represents an n-dimensional dense numerical single-channel or multi-channel array. It can be used to store real or complex-valued vectors and matrices, grayscale or color images, voxel volumes, vector fields, point clouds, tensors, histograms (though, very high-dimensional histograms may be better stored in a SparseMat ).

上面的一段话引用自官方的文档,Mat类用于表示一个多维的单通道或者多通道的稠密数组。能够用来保存实数或复数的向量、矩阵,灰度或彩色图像,立体元素,点云,张量以及直方图(高维的直方图使用SparseMat保存比较好)。简而言之,Mat就是用来保存多维的矩阵的。

Mat的常见属性

  • data  uchar型的指针。Mat类分为了两个部分:矩阵头和指向矩阵数据部分的指针,data就是指向矩阵数据的指针。
  • dims 矩阵的维度,例如5*6矩阵是二维矩阵,则dims=2,三维矩阵dims=3.
  • rows  矩阵的行数
  • cols   矩阵的列数
  • size 矩阵的大小,size(cols,rows),如果矩阵的维数大于2,则是size(-1,-1)
  • channels 矩阵元素拥有的通道数,例如常见的彩色图像,每一个像素由RGB三部分组成,则channels = 3

下面的几个属性是和Mat中元素的数据类型相关的。

  • type
    表示了矩阵中元素的类型以及矩阵的通道个数,它是一系列的预定义的常量,其命名规则为CV_(位数)+(数据类型)+(通道数)。具体的有以下值:
    CV_8UC1 CV_8UC2 CV_8UC3 CV_8UC4
    CV_8SC1 CV_8SC2 CV_8SC3 CV_8SC4
    CV_16UC1 CV_16UC2 CV_16UC3 CV_16UC4
    CV_16SC1 CV_16SC2 CV_16SC3 CV_16SC4
    CV_32SC1 CV_32SC2 CV_32SC3 CV_32SC4
    CV_32FC1 CV_32FC2 CV_32FC3 CV_32FC4
    CV_64FC1 CV_64FC2 CV_64FC3 CV_64FC4
    这里U(unsigned integer)表示的是无符号整数,S(signed integer)是有符号整数,F(float)是浮点数。
    例如:CV_16UC2,表示的是元素类型是一个16位的无符号整数,通道为2.
    C1,C2,C3,C4则表示通道是1,2,3,4
    type一般是在创建Mat对象时设定,如果要取得Mat的元素类型,则无需使用type,使用下面的depth
  • depth
    矩阵中元素的一个通道的数据类型,这个值和type是相关的。例如 type为 CV_16SC2,一个2通道的16位的有符号整数。那么,depth则是CV_16S。depth也是一系列的预定义值,
    将type的预定义值去掉通道信息就是depth值:
    CV_8U CV_8S CV_16U CV_16S CV_32S CV_32F CV_64F
  • elemSize
    矩阵一个元素占用的字节数,例如:type是CV_16SC3,那么elemSize = 3 * 16 / 8 = 6 bytes
  • elemSize1
    矩阵元素一个通道占用的字节数,例如:type是CV_16CS3,那么elemSize1 = 16  / 8 = 2 bytes = elemSize / channels

下面是一个示例程序,具体说明Mat的各个属性:

Mat img(3, 4, CV_16UC4, Scalar_(1, 2, 3, 4));
    
    cout < endl;

    cout <<"dims:" < endl;
    cout <<"rows:" < endl;
    cout <<"cols:" < endl;
    cout <<"channels:" < endl;
    cout <<"type:" < endl;
    cout <<"depth:" < endl;
    cout <<"elemSize:" < endl;
    cout <<"elemSize1:" <

首先创建了一个3*4的具有4个通道的矩阵,其元素类型是CV_16U。Scalar_是一个模板向量,用来初始化矩阵的每个像素,因为矩阵具有4个通道,Scalar_有四个值。其运行结果:
,运行结果首先打印了Mat中的矩阵,接着是Mat的各个属性。注意其type = 26,而depth = 2。这是由于上面所说的各种预定义类型
例如,CV_16UC4,CV_8U是一些预定义的常量。

step

Mat中的step是一个MStep的一个实例。其声明如下:

struct CV_EXPORTS MStep
    {
        MStep();
        MStep(size_t s);
        const size_t& operator[](int i) const;
        size_t& operator[](int i);
        operator size_t() const;
        MStep& operator = (size_t s);

        size_t* p;
        size_t buf[2];
    protected:
        MStep& operator = (const MStep&);
    };

从其声明中可以看出,MStep和size_t有比较深的关系。用size_t作为参数的构造函数和重载的赋值运算符

MStep(size_t s);
MStep& operator = (size_t s);

向size_t的类型转换以及重载的[ ]运算符返回size_t

const size_t& operator[](int i) const;
        
size_t& operator[](int i);

size_t的数组以及指针 

size_t* p;
        
size_t buf[2];

那么size_t又是什么呢,看代码

typedef  unsigned int   size_t;

size_t就是无符号整数。

再看一下MStep的构造函数,就可以知道其究竟保存的是什么了。

inline Mat::MStep::MStep(size_t s) { p = buf; p[0] = s; p[1] = 0; }

从MStep的定义可以知道,buff是一个size_t[2],而p是size_t *,也就是可以把MStep看做一个size_t[2]。那么step中保存的这个size_t[2]和Mat中的数据有何种关系呢。

step[0]是矩阵中一行元素的字节数。

step[1]是矩阵中一个元素的自己数,也就是和上面所说的elemSize相等。

上面说到,Mat中一个uchar* data指向矩阵数据的首地址,而现在又知道了每一行和每一个元素的数据大小,就可以快速的访问Mat中的任意元素了。下面公式:

,

step1

规整化的step,值为step / elemSize1。 定义如下:

inline size_t Mat::step1(int i) const { return step.p[i]/elemSize1(); }

仍以上例代码中定义的img为例,来看下step,step1具体的值:
,img(3*4)的type是CV_16UC4,step[0]是其一行所占的数据字节数4 *4 * 16 / 8  = 32.
step[1] 是一个元素所占的字节数,img的一个元素具有4个通道,故:4 * 16 / 8 = 2
step1 = step / elemSize1,elemSize1是元素的每个通道所占的字节数。

N维的step(N > 2)

上面分析step是一个size_t[2],实际不是很正确,正确的来说step应该是size_t[dims],dims是Mat的维度,所以对于上面的二维的Mat来说,step是size_t[2]也是正确的。
下面就对三维的Mat数据布局以及step(维度大于3的就算了吧)。

,

上图引用自http://ggicci.blog.163.com/blog/static/210364096201261052543349/  搜集资料时发现了这幅图,一切就变的简单了 ,  感谢作者 Ggicci

三维的数据在Mat中是按面来存储的,上图描述的很清晰,这里不再多说。
上面言道,step是一个size_t[dims],dims是维度。so,三维的step就是size_t[3]。其余的不多说了,看图就有了。下面来创建一个三维的Mat,实际看看

int dims[3] = { 3, 3, 3 };
    Mat src(3, dims, CV_16SC2, Scalar_<short>(1,2));

    cout <<"step[0]:" <0] << endl;
    cout <<"step[1]:" <1] << endl;
    cout <<"step[2]:" <2] <

首先创建一个3*3*3,depth为CV_16S的两通道的Mat
step[0]是一个数据面的大小  3 * 3 * (16 / 8 ) * 2 = 36
step[1]是一行数据的大小 3 * (16 / 8 ) * 2 = 12
step[2]是一个元素的大小 2 * (16 / 8) = 4
,
PS: 三维的Mat 不能使用 <<运算符进行输出的。

over

OpenCV2:Mat属性type,depth,step


推荐阅读
  • 2023年京东Android面试真题解析与经验分享
    本文由一位拥有6年Android开发经验的工程师撰写,详细解析了京东面试中常见的技术问题。涵盖引用传递、Handler机制、ListView优化、多线程控制及ANR处理等核心知识点。 ... [详细]
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • 本文深入探讨了C++对象模型中的一些细节问题,特别是虚拟继承和析构函数的处理。通过具体代码示例和详细分析,揭示了书中某些观点的不足之处,并提供了更合理的解释。 ... [详细]
  • 本文详细探讨了KMP算法中next数组的构建及其应用,重点分析了未改良和改良后的next数组在字符串匹配中的作用。通过具体实例和代码实现,帮助读者更好地理解KMP算法的核心原理。 ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • 题目描述:给定n个半开区间[a, b),要求使用两个互不重叠的记录器,求最多可以记录多少个区间。解决方案采用贪心算法,通过排序和遍历实现最优解。 ... [详细]
  • 本文详细介绍了如何通过多种编程语言(如PHP、JSP)实现网站与MySQL数据库的连接,包括创建数据库、表的基本操作,以及数据的读取和写入方法。 ... [详细]
  • 本文介绍如何在应用程序中使用文本输入框创建密码输入框,并通过设置掩码来隐藏用户输入的内容。我们将详细解释代码实现,并提供专业的补充说明。 ... [详细]
  • 本文介绍如何使用 NSTimer 实现倒计时功能,详细讲解了初始化方法、参数配置以及具体实现步骤。通过示例代码展示如何创建和管理定时器,确保在指定时间间隔内执行特定任务。 ... [详细]
  • 本文介绍了在Windows环境下使用pydoc工具的方法,并详细解释了如何通过命令行和浏览器查看Python内置函数的文档。此外,还提供了关于raw_input和open函数的具体用法和功能说明。 ... [详细]
  • 本文详细探讨了HTTP 500内部服务器错误的成因、解决方案及其在Web开发中的影响。通过对具体案例的分析,帮助读者理解并解决此类问题。 ... [详细]
  • 本文介绍如何使用阿里云的fastjson库解析包含时间戳、IP地址和参数等信息的JSON格式文本,并进行数据处理和保存。 ... [详细]
  • Codeforces Round #566 (Div. 2) A~F个人题解
    Dashboard-CodeforcesRound#566(Div.2)-CodeforcesA.FillingShapes题意:给你一个的表格,你 ... [详细]
  • 堆是一种常见的数据结构,广泛应用于计算机科学领域。它通常表示为一棵完全二叉树,并可通过数组实现。堆的主要特性是每个节点的值与其父节点的值之间存在特定的关系,这使得堆在优先队列和排序算法中非常有用。 ... [详细]
  • 探索电路与系统的起源与发展
    本文回顾了电路与系统的发展历程,从电的早期发现到现代电子器件的应用。文章不仅涵盖了基础理论和关键发明,还探讨了这一学科对计算机、人工智能及物联网等领域的深远影响。 ... [详细]
author-avatar
埃菲尔的天空有什么
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有