热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

NEFU628Gardenvisiting(数论)

GardenvisitingProblem:628TimeLimit:1000msMemoryLimit

            Garden visiting

    Problem:628  Time Limit:1000ms  Memory Limit:65536K

Description

There is a very big garden at Raven’s residence. We regard the garden as an n*m rectangle. Raven’s house is at the top left corner, and the exit of the garden is at the bottom right. He can choose to take one step to only one direction (up, down, left or right) each time. Raven wants to go out of the garden as quickly as possible, so he wonders how many routes he could choose. 
Raven knows there are many possible routes, so he only wants to know the number, which is the result that the total number of possible routes modes a given value p. He knows it is a simple question, so he hopes you may help him to solve it. 

Input

The first line of the input contains an integer T, which indicates the number of test cases.
Then it is followed by three positive integers n, m and p (1 <= n, m, p <= 10^5), showing the length and width of the garden and p to be the mod of the result. 

Output

For each case, output one number to show the result (the sum modes p).

Sample Input

3
2 2 5
2 6 16
6 6 24

Sample Output

2
6
12

Hint

Sample 1: There are 2 routes in total. 
Sample 2: There are 6 routes in total.
Sample 3: There are 252 routes in total.

题意:给定一个n*m的矩阵,让你求从左上角走到右下角有多少方法。

析:很明显一个组合问题,C(n+m-2, m-1),这就是答案,我们只要计算这个就好,所以暴力去分解分子和分母,然后再乘起来。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
//#include 
//#include 
//#define freopenr freopen("in.txt", "r", stdin)
//#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
//using namespace std :: tr1;

typedef long long LL;
typedef pair P;
const int INF = 0x3f3f3f3f;
//const double inf = 0x3f3f3f3f3f3f;
//const LL LNF = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 10005;
//const LL mod = 10000000000007;
const int N = 1e6 + 5;
const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};
const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};
const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
inline LL gcd(LL a, LL b){  return b == 0 ? a : gcd(b, a%b); }
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a  b ? a : b; }
inline LL Min(LL a, LL b){ return a  b ? a : b; }
inline bool is_in(int r, int c){
    return r >= 0 && r = 0 && c  prime;
bool a[200050];

void init(){
    int m = sqrt(200050+0.5);
    memset(a, false, sizeof a);
    for(int i = 2; i <= m; ++i)  if(!a[i])
        for(int j = i*i; j <200050; j += i)  a[j] = true;
    for(int i = 2; i <200050; ++i)  if(!a[i])  prime.push_back(i);
}
int p;

LL quick_pow(LL a, int n){
    LL ans = 1;
    while(n){
        if(n & 1)  ans = ans * a % p;
        a = a * a % p;
        n >>= 1;
    }
    return ans;
}

int cal(int x, int n){
    int ans = 0;
    while(n){
        ans += n / x;
        n /= x;
    }
    return ans;
}

LL solve(int n, int m){
    LL ans = 1;
    for(int i = 0; i > T;
    while(T--){
        scanf("%d %d %d", &n, &m, &p);
        n += m-2;
        --m;
        printf("%lld\n", solve(n, m));
    }
    return 0;
}

 


推荐阅读
  • 洛谷 P4035 [JSOI2008] 球形空间生成器(高斯消元法 / 模拟退火算法)
    本文介绍了洛谷 P4035 [JSOI2008] 球形空间生成器问题的解决方案,主要使用了高斯消元法和模拟退火算法。通过这两种方法,可以高效地求解多维空间中的球心位置。文章提供了详细的算法模板和实现代码,适用于 ACM 竞赛和其他相关应用场景。数据范围限制在 10 以内,确保了算法的高效性和准确性。 ... [详细]
  • 寒假作业解析:第三周 2月12日 第7题
    尽快完成之前的练习任务!每日一练2.1 Problem A Laurenty and Shop 的题目要求是选择两条不同的路线以最小化总的等待时间。简要分析:通过对比不同路线的等待时间,可以找到最优解。此问题可以通过动态规划或贪心算法来解决,具体取决于路线的复杂性和约束条件。 ... [详细]
  • 题目链接:POJ 2777。问题描述:给定一个区域,需要进行多次涂色操作,并在每次操作后查询某个区间内的不同颜色数量。解决方案:由于题目中颜色种类不超过30种,可以利用线段树的懒惰更新策略来高效处理这些操作。通过懒惰标记,避免了不必要的节点更新,从而显著提高了算法的效率。此外,该方法还能有效应对大规模数据输入,确保在合理的时间内完成所有操作。 ... [详细]
  • 每日精选Codeforces训练题:1119E(贪心算法)、821C(栈模拟)和645D(拓扑排序)
    题目涉及三种不同类型的算法问题:1119E(贪心算法)、821C(栈模拟)和645D(拓扑排序)。其中,1119E的问题背景是有n种不同长度的棍子,长度分别为2^0, 2^1, …, 2^(n-1),每种棍子的数量为a[i]。任务是计算可以组成的三角形数量。根据三角形的性质,任意两边之和必须大于第三边。该问题可以通过贪心算法高效解决,通过合理选择棍子组合来最大化三角形的数量。 ... [详细]
  • 在多堆石子游戏中,通过分析Nim博弈策略,探讨了如何在限定时间和内存条件下实现最优解。本文详细研究了石子游戏中的数学原理和算法优化方法,旨在为参与者提供有效的策略指导。具体而言,文章讨论了不同堆数下的Nim值计算及其应用,帮助玩家在复杂的博弈环境中取得优势。 ... [详细]
  • Prim算法在处理稠密图时表现出色,尤其适用于边数远多于顶点数的情形。传统实现的时间复杂度为 \(O(n^2)\),但通过引入优先队列进行优化,可以在点数为 \(m\)、边数为 \(n\) 的情况下显著降低时间复杂度,提高算法效率。这种优化方法不仅能够加速最小生成树的构建过程,还能在大规模数据集上保持良好的性能表现。 ... [详细]
  • NOIP2000的单词接龙问题与常见的成语接龙游戏有异曲同工之妙。题目要求在给定的一组单词中,从指定的起始字母开始,构建最长的“单词链”。每个单词在链中最多可出现两次。本文将详细解析该题目的解法,并分享学习过程中的心得体会。 ... [详细]
  • 本文深入探讨了佩尔方程 \( x^2 - dy^2 = 1 \) 的递推关系式。通过构造特定的矩阵并利用矩阵快速幂的方法,可以高效地计算出该方程的第 k 组解。此外,文章还详细分析了递推关系式的数学背景及其在数论中的应用,为相关研究提供了坚实的理论基础。 ... [详细]
  • 在洛谷 P1344 的坏牛奶追踪问题中,第一问要求计算最小割,而第二问则需要找到割边数量最少的最小割。通过为每条边附加一个单位权值,可以在求解最小割时优先选择边数较少的方案,从而同时解决两个问题。这种策略不仅简化了问题的求解过程,还确保了结果的最优性。 ... [详细]
  • 蓝桥杯算法实战:节点选取策略优化分析
    本文针对蓝桥杯算法竞赛中的节点选取策略进行了深入分析与优化。通过对比不同节点选择方法的效果,提出了基于贪心算法和动态规划的综合优化方案,旨在提高算法效率和准确性。实验结果表明,该优化策略在处理大规模数据集时表现出色,显著提升了算法性能。 ... [详细]
  • 开发心得:成为SGU475智能筏工的策略与技巧 ... [详细]
  • 在 Linux 环境下,多线程编程是实现高效并发处理的重要技术。本文通过具体的实战案例,详细分析了多线程编程的关键技术和常见问题。文章首先介绍了多线程的基本概念和创建方法,然后通过实例代码展示了如何使用 pthreads 库进行线程同步和通信。此外,还探讨了多线程程序中的性能优化技巧和调试方法,为开发者提供了宝贵的实践经验。 ... [详细]
  • 在Kohana 3框架中,实现最优的即时消息显示方法是许多开发者关注的问题。本文将探讨如何高效、优雅地展示flash消息,包括最佳实践和技术细节,以提升用户体验和代码可维护性。 ... [详细]
  • 本文探讨了 Java 中 Pair 类的历史与现状。虽然 Java 标准库中没有内置的 Pair 类,但社区和第三方库提供了多种实现方式,如 Apache Commons 的 Pair 类和 JavaFX 的 javafx.util.Pair 类。这些实现为需要处理成对数据的开发者提供了便利。此外,文章还讨论了为何标准库未包含 Pair 类的原因,以及在现代 Java 开发中使用 Pair 类的最佳实践。 ... [详细]
  • 本文对常见的字符串哈希函数进行了全面分析,涵盖了BKDRHash、APHash、DJBHash、JSHash、RSHash、SDBMHash、PJWHash和ELFHash等多种算法。这些哈希函数在不同的应用场景中表现出各异的性能特点,通过对比其算法原理、计算效率和碰撞概率,为实际应用提供了有价值的参考。 ... [详细]
author-avatar
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有