热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

MongoDB之分组查询

分组查询可视化工具https:robomongo.orgpymongo分组查询$match:对数据进行过滤投射project$group$sort,

分组查询

可视化工具

https://robomongo.org

pymongo

from pymongo import MongoClient
# 方式一:
c = MongoClient(host="127.0.0.1",port=27017)
db=c["admin"]
db.authenticate("root":"123")
db = c[\'day5\']
print(db.collection_name(include_system_collectiOns=False))
# 方式二:
c = MongoClient("mongodb://root:123@127.0.0.1:27017")
db=c[\'day5\']
print(db.collection_name(include_system_collectiOns=False))
user_table=db[\'user\']
print(list(user_table.find()))

分组查询

# 聚合函数: $sum,$max,$min,$first,$last
# 每个部门最高工资
select post,max(salary) from emp group by post

db.emp.aggregate({
    "$group":{
        "_id":"$post",
        "max_salary":{"$max":"$salary"},
        "avg_salary":{"$avg":"$salary"},
        "第一个":{"$first":"$name"}
    }
})

# 每个部门的员工姓名-- 拼到列表(相当于group_concat)
db.emp.aggregate({
    "$goup":{
        "_id":"$post",
        "人员名单":{"$push":"$name"}
        #"人员名单":{"$addToset":"$name"} -- 去除重复
    }
})

$match : 对数据进行过滤

# mysql where and having(只能是分组后使用),goup by 后面不能出现where
# {"$match":{"字段":"条件"}}, 可以使用任何常用查询操作符 $gt, $lt,$in
db.emp.aggregrate({
    "$match":{"name":"egon"}
})
db.emp.aggregrate({
    "$match":{"_id":{"$gt":3}}
})
# 查询部门最高工作 》10000 的部门信息
db.emp.aggregrate(
    { "$group":{
        "_id":"$post",
        "max_salary":{"$max":"$salary"}
    }},
	{"$match":{"max_salary":{"$gt":10000}}},
    {"$match":{"_id":{"$ne":"teacher"}}}   
)

投射 project

# 不修改原始数据,只是显示
# 1. {"$project":{"要保留的字段名":1,"要去掉的字段名":0,"新增的字段名":"表达式"}}

db.emp.aggregate(
{"$project":{"name":1,"_id":0}}  -- 展示name, 不展示id
)
# 计算一年的工资
db.emp.aggregate(
{"$project":{
    "name":1,
    "_id":0,
	"year_salary":{"$multiply":[12,"$salary"]}
}}  -- 展示name, 不展示id
)
# 加法: 年龄+10 (可多个值)
db.emp.aggregate(
{"$project":{
    "name":1,
    "_id":0,
	"10_later":{"$add":[10,"$age"]}
}} 
)
##2. 数学表达式
{"add":[expr1,expr2,....]}  # 相加
{"$subtract":[expr1,expr2]  # 相减
{"$multiply":[expr1,expr2,...,exprN]} #相乘
{"$divide":[expr1,expr2]} #第一个表达式除以第二个表达式的商作为结果
{"$mod":[expr1,expr2]} #第一个表达式除以第二个表达式得到的余数作为结果

#注意!! 隐藏字段不能参加运算

 # 3. 表达式之日期表达
 # $add   $subtract  $multiply   $divide
 $year $month, $week,$dayofMonth,$dayofWeek,$dayofYear,$hour,$minute,$second
 db.emp.aggregate(
{"$project":{
    "name":1,
    "_id":0,
	"year":{"$year":"$hire_date"}
    "job_year":{"$subtract":[{"$year":new Date()},{"$year":"$hire_date"}]}
}} 
)
 
#4. 字符串表达式
{"$substr":[字符串/$值为字符串的字段名,起始位置,截取几个\'字节\']}
{"$concat":[expr1,expr2...]} #指定的表达式或字符串连接在一起返回,只支持字符串拼接
{"$toLower":expr}
{"$toUpper":expr}
db.emp.aggregate({"$project":{"NAME":{"$toUpper":"$name"}}})
 
# 5. 逻辑表达式
$and
$or
$not
其他见Mongodb权威指南

$ group

$group 用于分组
# 分组后具体信息被隐藏
db.emp.aggregate(
    {"$match":{"_id":{"$gt":3}}},
    {"$group":{"_id":"$post"}}
)  # 结果:{"_id":"operation"} {"_id":"sale"} {"_id":"teacher"}  三个部门

# 要对分组后的内容进行统计就需要对应的几个聚合函数
# 对应的聚合函数 $sum、$avg、$max、$min、$first、$last
# select id,avg(salary) from db1.emp where id > 3 group by post;  
db.emp.aggregate(
    {"$match":{"_id":{"$gt":3}}},
    {"$group":{"_id":"$post",\'avg_salary\':{"$avg":"$salary"}}},
)
# match用于匹配 与mysql不同的是没有顺序限制,每一个操作接收上一个数据进行处理再传给下一个
# select id,avg(salary) from db1.emp where id > 3 group by post having avg(salary) > 10000;
db.emp.aggregate(
    {"$match":{"_id":{"$gt":3}}},
    {"$group":{"_id":"$post","ave_salary":{"$avg":"$salary"}}},
    {"$match":{"avg_salary":{"$gt":10000}}}
)

#1、将分组字段传给$group函数的_id字段即可
{"$group":{"_id":"$sex"}} #按照性别分组
{"$group":{"_id":{"state":"$state","city":"$city"}}} #按照多个字段分组,比如按照州市分组

#2、分组后聚合得结果,类似于sql中聚合函数的聚合操作符:$sum、$avg、$max、$min、$first、$last
#例1:select post,max(salary) from db1.emp group by post; 
db.emp.aggregate({"$group":{"_id":"$post","max_salary":{"$max":"$salary"}}})

#例2:去每个部门最大薪资与最低薪资
db.emp.aggregate({"$group":{"_id":"$post","max_salary":{"$max":"$salary"},"min_salary":{"$min":"$salary"}}})

#例3:如果字段是排序后的,那么$first,$last会很有用,比用$max和$min效率高
db.emp.aggregate({"$group":{"_id":"$post","first_id":{"$first":"$_id"}}})

#例4:求每个部门的总工资
db.emp.aggregate({"$group":{"_id":"$post","count":{"$sum":"$salary"}}})

#例5:求每个部门的人数
db.emp.aggregate({"$group":{"_id":"$post","count":{"$sum":1}}})

# 3. 数组操作符, 等同于group_concat
"数组":{"$addToSet":expr}: 不重复
"数组":{"$push":expr}:  重复      
 #例:查询岗位名以及各岗位内的员工姓名:select post,group_concat(name) from db1.emp group by post;
db.emp.aggregrate({"$group":{"_id":"$post","names":{"$push":"$name"}}})
db.emp.aggregrate({"$group":{"_id":"$post","names":{"$addToSet":"$name"}}})        

$sort, limit, skip

{"$sort":{"字段1":1,"字段2":-1}}  1升序  -1降序
{"$limit":1}
{"$skip":2} #跳过多少个文档
#例1、取平均工资最高的前两个部门
# 分类,平均工资,前两个
db.emp.aggregrate(
    {"$group":{"ave_salary":{"$avg":"$salary"}}},
    {"$sort":{"ave_salary":1}},
    {"$limit":2}
    {"skip":1}
)
排序:$sort、限制:$limit、跳过:$skip

$sample

# 随机取出n条记录
#集合users包含的文档如下
{ "_id" : 1, "name" : "dave123", "q1" : true, "q2" : true }
{ "_id" : 2, "name" : "dave2", "q1" : false, "q2" : false  }
{ "_id" : 3, "name" : "ahn", "q1" : true, "q2" : true  }
{ "_id" : 4, "name" : "li", "q1" : true, "q2" : false  }
{ "_id" : 5, "name" : "annT", "q1" : false, "q2" : true  }
{ "_id" : 6, "name" : "li", "q1" : true, "q2" : true  }

db.users.aggregrate({"$sample":{"size":3}})


推荐阅读
  • 本文详细探讨了Java集合框架的使用方法及其性能特点。首先,通过关系图展示了集合接口之间的层次结构,如`Collection`接口作为对象集合的基础,其下分为`List`、`Set`和`Queue`等子接口。其中,`List`接口支持按插入顺序保存元素且允许重复,而`Set`接口则确保元素唯一性。此外,文章还深入分析了不同集合类在实际应用中的性能表现,为开发者选择合适的集合类型提供了参考依据。 ... [详细]
  • 本文详细解析了如何使用 jQuery 实现一个在浏览器地址栏运行的射击游戏。通过源代码分析,展示了关键的 JavaScript 技术和实现方法,并提供了在线演示链接供读者参考。此外,还介绍了如何在 Visual Studio Code 中进行开发和调试,为开发者提供了实用的技巧和建议。 ... [详细]
  • 本项目在Java Maven框架下,利用POI库实现了Excel数据的高效导入与导出功能。通过优化数据处理流程,提升了数据操作的性能和稳定性。项目已发布至GitHub,当前最新版本为0.0.5。该项目不仅适用于小型应用,也可扩展用于大型企业级系统,提供了灵活的数据管理解决方案。GitHub地址:https://github.com/83945105/holygrail,Maven坐标:`com.github.83945105:holygrail:0.0.5`。 ... [详细]
  • Android 图像色彩处理技术详解
    本文详细探讨了 Android 平台上的图像色彩处理技术,重点介绍了如何通过模仿美图秀秀的交互方式,利用 SeekBar 实现对图片颜色的精细调整。文章展示了具体的布局设计和代码实现,帮助开发者更好地理解和应用图像处理技术。 ... [详细]
  • 本文介绍了如何通过掌握 IScroll 技巧来实现流畅的上拉加载和下拉刷新功能。首先,需要按正确的顺序引入相关文件:1. Zepto;2. iScroll.js;3. scroll-probe.js。此外,还提供了完整的代码示例,可在 GitHub 仓库中查看。通过这些步骤,开发者可以轻松实现高效、流畅的滚动效果,提升用户体验。 ... [详细]
  • 本文深入探讨了 MXOTDLL.dll 在 C# 环境中的应用与优化策略。针对近期公司从某生物技术供应商采购的指纹识别设备,该设备提供的 DLL 文件是用 C 语言编写的。为了更好地集成到现有的 C# 系统中,我们对原生的 C 语言 DLL 进行了封装,并利用 C# 的互操作性功能实现了高效调用。此外,文章还详细分析了在实际应用中可能遇到的性能瓶颈,并提出了一系列优化措施,以确保系统的稳定性和高效运行。 ... [详细]
  • 本题库精选了Java核心知识点的练习题,旨在帮助学习者巩固和检验对Java理论基础的掌握。其中,选择题部分涵盖了访问控制权限等关键概念,例如,Java语言中仅允许子类或同一包内的类访问的访问权限为protected。此外,题库还包括其他重要知识点,如异常处理、多线程、集合框架等,全面覆盖Java编程的核心内容。 ... [详细]
  • 在稀疏直接法视觉里程计中,通过优化特征点并采用基于光度误差最小化的灰度图像线性插值技术,提高了定位精度。该方法通过对空间点的非齐次和齐次表示进行处理,利用RGB-D传感器获取的3D坐标信息,在两帧图像之间实现精确匹配,有效减少了光度误差,提升了系统的鲁棒性和稳定性。 ... [详细]
  • 如何在 Java LinkedHashMap 中高效地提取首个或末尾的键值对? ... [详细]
  • 深入解析Gradle中的Project核心组件
    在Gradle构建系统中,`Project` 是一个核心组件,扮演着至关重要的角色。通过使用 `./gradlew projects` 命令,可以清晰地列出当前项目结构中包含的所有子项目,这有助于开发者更好地理解和管理复杂的多模块项目。此外,`Project` 对象还提供了丰富的配置选项和生命周期管理功能,使得构建过程更加灵活高效。 ... [详细]
  • Java 9 中 SafeVarargs 注释的使用与示例解析 ... [详细]
  • 本文深入探讨了 Python Watchdog 库的使用方法和应用场景。通过详细的代码示例,展示了如何利用 Watchdog 监控文件系统的变化,包括文件的创建、修改和删除等操作。文章不仅介绍了 Watchdog 的基本功能,还探讨了其在实际项目中的高级应用,如日志监控和自动化任务触发。读者将能够全面了解 Watchdog 的工作原理及其在不同场景下的应用技巧。 ... [详细]
  • MongoDB Aggregates.group() 方法详解与编程实例 ... [详细]
  • 本文首先对信息漏洞的基础知识进行了概述,重点介绍了几种常见的信息泄露途径。具体包括目录遍历、PHPINFO信息泄露以及备份文件的不当下载。其中,备份文件下载涉及网站源代码、`.bak`文件、Vim缓存文件和`DS_Store`文件等。目录遍历漏洞的详细分析为后续深入研究奠定了基础。 ... [详细]
  • 深入解析Python中的循环双向链表数据结构
    本文详细探讨了Python中循环双向链表的数据结构,包括其定义、特点及应用场景。文章首先介绍了循环双向链表的基本概念,随后深入分析了其核心操作,如节点的插入、删除和遍历等。最后,通过具体的Python代码示例,展示了如何高效地实现这些操作,帮助读者全面理解并掌握这一重要数据结构。 ... [详细]
author-avatar
手机用户2602889207
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有