热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

每日算法寻找两个正序数组的中位数

寻找两个正序数组的中位数题目:给定两个大小分别为m和n的正序(从小到大)数组nums1和nums2。请你找出并返回这两个正序数组的中位

寻找两个正序数组的中位数
在这里插入图片描述

题目:

给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的 中位数 。示例 1:输入:nums1 = [1,3], nums2 = [2]
输出:2.00000
解释:合并数组 = [1,2,3] ,中位数 2
示例 2:输入:nums1 = [1,2], nums2 = [3,4]
输出:2.50000
解释:合并数组 = [1,2,3,4] ,中位数 (2 + 3) / 2 = 2.5
示例 3:输入:nums1 = [0,0], nums2 = [0,0]
输出:0.00000
示例 4:输入:nums1 = [], nums2 = [1]
输出:1.00000
示例 5:输入:nums1 = [2], nums2 = []
输出:2.00000

哥哥,你慢慢想,我先亮剑了!!!!!

方法一:二分查找


给定两个有序数组,要求找到两个有序数组的中位数,最直观的思路有以下两种:



  1. 使用归并的方式,合并两个有序数组,得到一个大的有序数组。大的有序数组的中间位置的元素,即为中位数

  2. 不需要合并两个有序数组,只要找到中位数的位置即可。由于两个数组的长度已知,因此中位数对应的两个数组的下标之和也是已知的。维护两个指针,初始时分别指向两个数组的下标0 的位置,每次将指向较小值的指针后移一位(如果一个指针已经到达数组末尾,则只需要移动另一个数组的指针),直到到达中位数的位置。

哥哥先不要急,先想一想!假设两个有序数组的长度分别为 m 和 n,上述两种思路的复杂度如何?


第一种思路的时间复杂度是 O(m+n),空间复杂度是 O(m+n)。第二种思路虽然可以将空间复杂度降到
O(1),但是时间复杂度仍是 O(m+n)。


如何把时间复杂度降低到 O(log(m+n)) 呢?如果对时间复杂度的要求有log,通常都需要用到二分查找,这道题也可以通过二分查找实现。

根据中位数的定义,当 m+n 是奇数时,中位数是两个有序数组中的第 (m+n)/2 个元素,当m+n 是偶数时,中位数是两个有序数组中的第(m+n)/2 个元素和第(m+n)/2+1 个元素的平均值。因此,这道题可以转化成寻找两个有序数组中的第 k 小的数,其中 k为 (m+n)/2 或 (m+n)/2+1。

假设两个有序数组分别是 A 和 B。要找到第 k 个元素,我们可以比较 A[k/2−1] 和 B[k/2−1],其中 / 表示整数除法。由于 A[k/2−1] 和 B[k/2−1] 的前面分别有 A[0…k/2−2] 和 B[0…k/2−2],即k/2−1 个元素,对于 A[k/2−1] 和 B[k/2−1] 中的较小值,最多只会有 (k/2−1)+(k/2−1)≤k−2 个元素比它小,那么它就不能是第 k 小的数了。你好好想想,小哥哥。


因此我们可以归纳出三种情况

  1. 如果 A[k/2−1] 也都不可能是第 k 个数,可以全部排除。
  2. 如果 A[k/2−1]>B[k/2−1],则可以排除B[0] 到 ]B[k/2−1]。
  3. 如果 A[k/2−1]=B[k/2−1],则可以归入第一种情况处理。
    在这里插入图片描述
    可以看到,比较 A[k/2−1] 和 B[k/2−1] 之后,可以排除k/2 个不可能是第 k 小的数,查找范围缩小了一半。同时,我们将在排除后的新数组上继续进行二分查找,并且根据我们排除数的个数,减少 k 的值,这是因为我们排除的数都不大于第 k 小的数。

有以下三种情况需要特殊处理:


  1. 如果 A[k/2−1] 或者B[k/2−1]越界,那么我们可以选取对应数组中的最后一个元素。在这种情况下,我们必须根据排除数的个数减少 k 的值,而不能直接将 k 减去k/2。
  2. 如果一个数组为空,说明该数组中的所有元素都被排除,我们可以直接返回另一个数组中第 k 小的元素。
  3. 如果 k=1,我们只要返回两个数组首元素的最小值即可。

用一个例子说明上述算法。假设两个有序数组如下:


A: 1 3 4 9
B: 1 2 3 4 5 6 7 8 9


两个有序数组的长度分别是 4 和 9,长度之和是 13,中位数是两个有序数组中的第 7 个元素,因此需要找到第 k=7 个元素。

比较两个有序数组中下标为 k/2−1=2 的数,即 A[2] 和 B[2],如下面所示:


A: 1 3 4 9
           ↑
B: 1 2 3 4 5 6 7 8 9
           ↑


由于 A[2]>B[2],因此排除 B[0] 到B[2],即数组 B 的下标偏移(offset)变为 3,同时更新 k 的值:k=k−k/2=4。

下一步寻找,比较两个有序数组中下标为 k/2−1=1 的数,即 A[1] 和 B[4],如下面所示,其中方括号部分表示已经被排除的数。


A: 1 3 4 9
       ↑
B: [1 2 3] 4 5 6 7 8 9
                   ↑


由于A[1]

下一步寻找,比较两个有序数组中下标为 k/2-1=0k/2−1=0 的数,即比较 \text{A}[2]A[2] 和 \text{B}[3]B[3],如下面所示,其中方括号部分表示已经被排除的数。


A: [1 3] 4 9
             ↑
B: [1 2 3] 4 5 6 7 8 9
                ↑


由于 A[2]=B[3],根据之前的规则,排除A 中的元素,因此排除 A[2],即数组 A 的下标偏移变为 3,同时更新 k 的值:k=k−k/2=1。

由于 k 的值变成 1,因此比较两个有序数组中的未排除下标范围内的第一个数,其中较小的数即为第 k个数,由于A[3]>B[3],因此第 k 个数是 B[3]=4。


A: [1 3 4] 9
                ↑
B: [1 2 3] 4 5 6 7 8 9
                ↑


代码:

class Solution {public double findMedianSortedArrays(int[] nums1, int[] nums2) {int length1 = nums1.length, length2 = nums2.length;int totalLength = length1 + length2;if (totalLength % 2 == 1) {int midIndex = totalLength / 2;double median = getKthElement(nums1, nums2, midIndex + 1);return median;} else {int midIndex1 = totalLength / 2 - 1, midIndex2 = totalLength / 2;double median = (getKthElement(nums1, nums2, midIndex1 + 1) + getKthElement(nums1, nums2, midIndex2 + 1)) / 2.0;return median;}}public int getKthElement(int[] nums1, int[] nums2, int k) {/* 主要思路:要找到第 k (k>1) 小的元素,那么就取 pivot1 = nums1[k/2-1] 和 pivot2 = nums2[k/2-1] 进行比较* 这里的 "/" 表示整除* nums1 中小于等于 pivot1 的元素有 nums1[0 .. k/2-2] 共计 k/2-1 个* nums2 中小于等于 pivot2 的元素有 nums2[0 .. k/2-2] 共计 k/2-1 个* 取 pivot = min(pivot1, pivot2),两个数组中小于等于 pivot 的元素共计不会超过 (k/2-1) + (k/2-1) <= k-2 个* 这样 pivot 本身最大也只能是第 k-1 小的元素* 如果 pivot = pivot1,那么 nums1[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums1 数组* 如果 pivot = pivot2,那么 nums2[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums2 数组* 由于我们 "删除" 了一些元素(这些元素都比第 k 小的元素要小),因此需要修改 k 的值,减去删除的数的个数*/int length1 = nums1.length, length2 = nums2.length;int index1 = 0, index2 = 0;int kthElement = 0;while (true) {// 边界情况if (index1 == length1) {return nums2[index2 + k - 1];}if (index2 == length2) {return nums1[index1 + k - 1];}if (k == 1) {return Math.min(nums1[index1], nums2[index2]);}// 正常情况int half = k / 2;int newIndex1 = Math.min(index1 + half, length1) - 1;int newIndex2 = Math.min(index2 + half, length2) - 1;int pivot1 = nums1[newIndex1], pivot2 = nums2[newIndex2];if (pivot1 <= pivot2) {k -= (newIndex1 - index1 + 1);index1 = newIndex1 + 1;} else {k -= (newIndex2 - index2 + 1);index2 = newIndex2 + 1;}}}
}

复杂度分析


  1. 时间复杂度:O(log(m+n)),其中 m 和 n 分别是数组nums1和 nums2的长度。初始时有k=(m+n)/2
    或k=(m+n)/2+1,每一轮循环可以将查找范围减少一半,因此时间复杂度是 O(log(m+n))。
  2. 空间复杂度:O(1)。

方法二:划分数组

方法一的时间复杂度已经很优秀了,但本题存在时间复杂度更低的一种方法。这里给出推导过程,勇于挑战自己的读者可以进行尝试。

为了使用划分的方法解决这个问题,需要理解「中位数的作用是什么」。在统计中,中位数被用来:
将一个集合划分为两个长度相等的子集,其中一个子集中的元素总是大于另一个子集中的元素。
如果理解了中位数的划分作用,就很接近答案了。

首先,在任意位置 i 将 A 划分成两个部分:


left_A | right_A
A[0], A[1], ..., A[i-1] | A[i], A[i+1], ..., A[m-1]

由于 A 中有 mm 个元素, 所以有 m+1 种划分的方法(i∈[0,m])。


len(left_A)=i,len(right_A)=m−i.

注意:当i=0 时,left_A 为空集, 而当i=m 时, right_A 为空集。采用同样的方式,在任意位置 j将 B 划分成两个部分:

left_B | right_B
B[0], B[1], ..., B[j-1] | B[j], B[j+1], ..., B[n-1]

将left_A 和left_B 放入一个集合,并将right_A 和right_B 放入另一个集合。 再把这两个新的集合分别命名为 left_part 和 right_part:


left_part | right_part
A[0], A[1], ..., A[i-1] | A[i], A[i+1], ..., A[m-1]
B[0], B[1], ..., B[j-1] | B[j], B[j+1], ..., B[n-1]

当 A 和 B 的总长度是偶数时,如果可以确认:


  1. len(left_part)=len(right_part)
  2. max(left_part)≤min(right_part)

那么,{A,B} 中的所有元素已经被划分为相同长度的两个部分,且前一部分中的元素总是小于或等于后一部分中的元素。中位数就是前一部分的最大值和后一部分的最小值的平均值:
在这里插入图片描述
当 A 和 B 的总长度是奇数时,如果可以确认:


  1. len(left_part)=len(right_part)+1
  2. max(left_part)≤min(right_part)

那么,{A,B} 中的所有元素已经被划分为两个部分,前一部分比后一部分多一个元素,且前一部分中的元素总是小于或等于后一部分中的元素。中位数就是前一部分的最大值:


median=max(left_part)


第一个条件对于总长度是偶数和奇数的情况有所不同,但是可以将两种情况合并。第二个条件对于总长度是偶数和奇数的情况是一样的。

要确保这两个条件,只需要保证:


  1. i+j=m−i+n−j(当m+n 为偶数)或 i+j=m−i+n−j+1(当 m+n为奇数)。等号左侧为前一部分的元素个数,等号右侧为后一部分的元素个数。将 i 和 j 全部移到左侧,我们就可以得到 i+j
    =(m+n+1)/2。这里的分数结果只保留整数部分。
  2. 0≤i≤m,0≤j≤n。如果我们规定 A 的长度小于等于 B 的长度,即 m≤n。这样对于任意的 i∈[0,m],都 有 j = (m+n+1)/2 −i∈[0,n],那么我们在[0,m] 的范围内枚举 i 并得到 j,就不需要额外的性质了。
    a.如果A 的长度较大,那么我们只要交换 A 和 B 即可。
    b.如果 m>n ,那么得出的 j 有可能是负数。
  3. B[j−1]≤A[i] 以及 A[i−1]≤B[j],即前一部分的最大值小于等于后一部分的最小值。

为了简化分析,假设 A[i−1],B[j−1],A[i],B[j] 总是存在。对于i=0、i=m、j=0、j=n 这样的临界条件,我们只需要规定 A[−1]=B[−1]=−∞,A[m]=B[n]=∞ 即可。这也是比较直观的:当一个数组不出现在前一部分时,对应的值为负无穷,就不会对前一部分的最大值产生影响;当一个数组不出现在后一部分时,对应的值为正无穷,就不会对后一部分的最小值产生影响。

所以我们需要做的是:


在 [0,m] 中找到 i,使得:

B[j−1]≤A[i] 且 A[i−1]≤B[j],其中 j= (m+n+1)/2 −i


我们证明它等价于:


在[0,m] 中找到最大的 i,使得:

A[i−1]≤B[j],其中 j= (m+n+1)/2 −i


这是因为:


  1. 当 i 从 0∼m 递增时,A[i−1] 递增,B[j] 递减,所以一定存在一个最大的 i 满足 A[i−1]≤B[j];
  2. 如果 i 是最大的,那么说明 i+1 不满足。将 i+1 带入可以得到 A[i]>B[j−1],也就是
    B[j−1]

因此我们可以对 i 在[0,m] 的区间上进行二分搜索,找到最大的满足 A[i−1]≤B[j] 的 i 值,就得到了划分的方法。此时,划分前一部分元素中的最大值,以及划分后一部分元素中的最小值,才可能作为就是这两个数组的中位数。

代码

class Solution {public double findMedianSortedArrays(int[] nums1, int[] nums2) {if (nums1.length > nums2.length) {return findMedianSortedArrays(nums2, nums1);}int m = nums1.length;int n = nums2.length;int left = 0, right = m;// median1:前一部分的最大值// median2:后一部分的最小值int median1 = 0, median2 = 0;while (left <= right) {// 前一部分包含 nums1[0 .. i-1] 和 nums2[0 .. j-1]// 后一部分包含 nums1[i .. m-1] 和 nums2[j .. n-1]int i = (left + right) / 2;int j = (m + n + 1) / 2 - i;// nums_im1, nums_i, nums_jm1, nums_j 分别表示 nums1[i-1], nums1[i], nums2[j-1], nums2[j]int nums_im1 = (i == 0 ? Integer.MIN_VALUE : nums1[i - 1]);int nums_i = (i == m ? Integer.MAX_VALUE : nums1[i]);int nums_jm1 = (j == 0 ? Integer.MIN_VALUE : nums2[j - 1]);int nums_j = (j == n ? Integer.MAX_VALUE : nums2[j]);if (nums_im1 <= nums_j) {median1 = Math.max(nums_im1, nums_jm1);median2 = Math.min(nums_i, nums_j);left = i + 1;} else {right = i - 1;}}return (m + n) % 2 == 0 ? (median1 + median2) / 2.0 : median1;}
}

复杂度分析


  1. 时间复杂度:O(logmin(m,n))),其中 m 和 n 分别是数组 nums1和 nums2 的长度。查找的区间是[0,m],而该区间的长度在每次循环之后都会减少为原来的一半。所以,只需要执行 logm次循环。由于每次循环中的操作次数是常数,所以时间复杂度为 O(logm)。由于我们可能需要交换 nums1和 nums2 使得m≤n,因此时间复杂度是 O(logmin(m,n)))。
  2. 空间复杂度:O(1)。
    在这里插入图片描述
    写了那么多,但是实际开发中我还是会选择合并加sort,哈哈哈哈哈哈哈哈哈哈,代码和你有一个能跑就行!!!!!!!!!!!!

在这里插入图片描述


推荐阅读
  • CSS3选择器的使用方法详解,提高Web开发效率和精准度
    本文详细介绍了CSS3新增的选择器方法,包括属性选择器的使用。通过CSS3选择器,可以提高Web开发的效率和精准度,使得查找元素更加方便和快捷。同时,本文还对属性选择器的各种用法进行了详细解释,并给出了相应的代码示例。通过学习本文,读者可以更好地掌握CSS3选择器的使用方法,提升自己的Web开发能力。 ... [详细]
  • 生成式对抗网络模型综述摘要生成式对抗网络模型(GAN)是基于深度学习的一种强大的生成模型,可以应用于计算机视觉、自然语言处理、半监督学习等重要领域。生成式对抗网络 ... [详细]
  • Iamtryingtomakeaclassthatwillreadatextfileofnamesintoanarray,thenreturnthatarra ... [详细]
  • 在Android开发中,使用Picasso库可以实现对网络图片的等比例缩放。本文介绍了使用Picasso库进行图片缩放的方法,并提供了具体的代码实现。通过获取图片的宽高,计算目标宽度和高度,并创建新图实现等比例缩放。 ... [详细]
  • Java容器中的compareto方法排序原理解析
    本文从源码解析Java容器中的compareto方法的排序原理,讲解了在使用数组存储数据时的限制以及存储效率的问题。同时提到了Redis的五大数据结构和list、set等知识点,回忆了作者大学时代的Java学习经历。文章以作者做的思维导图作为目录,展示了整个讲解过程。 ... [详细]
  • sklearn数据集库中的常用数据集类型介绍
    本文介绍了sklearn数据集库中常用的数据集类型,包括玩具数据集和样本生成器。其中详细介绍了波士顿房价数据集,包含了波士顿506处房屋的13种不同特征以及房屋价格,适用于回归任务。 ... [详细]
  • 计算机存储系统的层次结构及其优势
    本文介绍了计算机存储系统的层次结构,包括高速缓存、主存储器和辅助存储器三个层次。通过分层存储数据可以提高程序的执行效率。计算机存储系统的层次结构将各种不同存储容量、存取速度和价格的存储器有机组合成整体,形成可寻址存储空间比主存储器空间大得多的存储整体。由于辅助存储器容量大、价格低,使得整体存储系统的平均价格降低。同时,高速缓存的存取速度可以和CPU的工作速度相匹配,进一步提高程序执行效率。 ... [详细]
  • Android JSON基础,音视频开发进阶指南目录
    Array里面的对象数据是有序的,json字符串最外层是方括号的,方括号:[]解析jsonArray代码try{json字符串最外层是 ... [详细]
  • 自动轮播,反转播放的ViewPagerAdapter的使用方法和效果展示
    本文介绍了如何使用自动轮播、反转播放的ViewPagerAdapter,并展示了其效果。该ViewPagerAdapter支持无限循环、触摸暂停、切换缩放等功能。同时提供了使用GIF.gif的示例和github地址。通过LoopFragmentPagerAdapter类的getActualCount、getActualItem和getActualPagerTitle方法可以实现自定义的循环效果和标题展示。 ... [详细]
  • 如何自行分析定位SAP BSP错误
    The“BSPtag”Imentionedintheblogtitlemeansforexamplethetagchtmlb:configCelleratorbelowwhichi ... [详细]
  • Java太阳系小游戏分析和源码详解
    本文介绍了一个基于Java的太阳系小游戏的分析和源码详解。通过对面向对象的知识的学习和实践,作者实现了太阳系各行星绕太阳转的效果。文章详细介绍了游戏的设计思路和源码结构,包括工具类、常量、图片加载、面板等。通过这个小游戏的制作,读者可以巩固和应用所学的知识,如类的继承、方法的重载与重写、多态和封装等。 ... [详细]
  • 本文介绍了闭包的定义和运转机制,重点解释了闭包如何能够接触外部函数的作用域中的变量。通过词法作用域的查找规则,闭包可以访问外部函数的作用域。同时还提到了闭包的作用和影响。 ... [详细]
  • GetWindowLong函数
    今天在看一个代码里头写了GetWindowLong(hwnd,0),我当时就有点费解,靠,上网搜索函数原型说明,死活找不到第 ... [详细]
  • 云原生边缘计算之KubeEdge简介及功能特点
    本文介绍了云原生边缘计算中的KubeEdge系统,该系统是一个开源系统,用于将容器化应用程序编排功能扩展到Edge的主机。它基于Kubernetes构建,并为网络应用程序提供基础架构支持。同时,KubeEdge具有离线模式、基于Kubernetes的节点、群集、应用程序和设备管理、资源优化等特点。此外,KubeEdge还支持跨平台工作,在私有、公共和混合云中都可以运行。同时,KubeEdge还提供数据管理和数据分析管道引擎的支持。最后,本文还介绍了KubeEdge系统生成证书的方法。 ... [详细]
  • 本文探讨了C语言中指针的应用与价值,指针在C语言中具有灵活性和可变性,通过指针可以操作系统内存和控制外部I/O端口。文章介绍了指针变量和指针的指向变量的含义和用法,以及判断变量数据类型和指向变量或成员变量的类型的方法。还讨论了指针访问数组元素和下标法数组元素的等价关系,以及指针作为函数参数可以改变主调函数变量的值的特点。此外,文章还提到了指针在动态存储分配、链表创建和相关操作中的应用,以及类成员指针与外部变量的区分方法。通过本文的阐述,读者可以更好地理解和应用C语言中的指针。 ... [详细]
author-avatar
汶汐_782
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有