热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

MapReduce编程(一)IntellijIdea配置MapReduce编程环境

介绍怎样在IntellijIdea中通过创建mavenproject配置MapReduce的编程环境。一、软件环境我使用的软件版本号例如以下:IntellijIdea2017.1M

介绍怎样在Intellij Idea中通过创建mavenproject配置MapReduce的编程环境。

一、软件环境

我使用的软件版本号例如以下:

  1. Intellij Idea 2017.1
  2. Maven 3.3.9
  3. Hadoop伪分布式环境( 安装教程可參考这里)
二、创建mavenproject

打开Idea,file->new->Project,左側面板选择mavenproject。(假设仅仅跑MapReduce创建javaproject就可以,不用勾选Creat from archetype,假设想创建webproject或者使用骨架能够勾选)
《MapReduce编程(一) Intellij Idea配置MapReduce编程环境》
设置GroupId和ArtifactId。下一步。

《MapReduce编程(一) Intellij Idea配置MapReduce编程环境》
设置project存储路径。下一步。
《MapReduce编程(一) Intellij Idea配置MapReduce编程环境》
Finish之后,空白project的路径例如以下图所看到的。

《MapReduce编程(一) Intellij Idea配置MapReduce编程环境》

完整的project路径例如以下图所看到的:
《MapReduce编程(一) Intellij Idea配置MapReduce编程环境》

三、加入maven依赖

在pom.xml加入依赖。对于hadoop 2.7.3版本号的hadoop,须要的jar包有下面几个:

  • hadoop-common
  • hadoop-hdfs
  • hadoop-mapreduce-client-core
  • hadoop-mapreduce-client-jobclient
  • log4j( 打印日志)

    pom.xml中的依赖例如以下:

<dependencies>
<dependency>
<groupId>junitgroupId>
<artifactId>junitartifactId>
<version>4.12version>
<scope>testscope>
dependency>
<dependency>
<groupId>org.apache.hadoopgroupId>
<artifactId>hadoop-commonartifactId>
<version>2.7.3version>
dependency>
<dependency>
<groupId>org.apache.hadoopgroupId>
<artifactId>hadoop-hdfsartifactId>
<version>2.7.3version>
dependency>
<dependency>
<groupId>org.apache.hadoopgroupId>
<artifactId>hadoop-mapreduce-client-coreartifactId>
<version>2.7.3version>
dependency>
<dependency>
<groupId>org.apache.hadoopgroupId>
<artifactId>hadoop-mapreduce-client-jobclientartifactId>
<version>2.7.3version>
dependency>
<dependency>
<groupId>log4jgroupId>
<artifactId>log4jartifactId>
<version>1.2.17version>
dependency>
dependencies>
四、配置log4j

src/main/resources目录下新增log4j的配置文件log4j.properties。内容例如以下:

log4j.rootLogger = debug,stdout
### 输出信息到控制抬 ###
log4j.appender.stdout = org.apache.log4j.ConsoleAppender
log4j.appender.stdout.Target = System.out
log4j.appender.stdout.layout = org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern = [%-5p] %d{yyyy-MM-dd HH:mm:ss,SSS} method:%l%n%m%n
五、启动Hadoop

启动Hadoop,执行命令:

cd hadoop-2.7.3/
./sbin/start-all.sh

訪问http://localhost:50070/查看hadoop是否正常启动。

六、执行WordCount(从本地读取文件)

在project根目录下新建input目录,input目录下新增dream.txt,随便写入一些单词:

I have a dream
a dream

在src/main/java目录下新建包。新增FileUtil.java,创建一个删除output文件的函数,以后就不用手动删除了。内容例如以下:

package com.mrtest.hadoop;
import java.io.File;
/** * Created by bee on 3/25/17. */
public class FileUtil {
public static boolean deleteDir(String path) {
File dir = new File(path);
if (dir.exists()) {
for (File f : dir.listFiles()) {
if (f.isDirectory()) {
deleteDir(f.getName());
} else {
f.delete();
}
}
dir.delete();
return true;
} else {
System.out.println("文件(夹)不存在!");
return false;
}
}
}

编写WordCount的MapReduce程序WordCount.java,内容例如以下:

package com.mrtest.hadoop;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer;
/** * Created by bee on 3/25/17. */
public class WordCount {
public static class TokenizerMapper extends
Mapper {
public static final IntWritable One= new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
this.word.set(itr.nextToken());
context.write(this.word, one);
}
}
}
public static class IntSumReduce extends
Reducer {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable values,
Context context)
throws IOException, InterruptedException {
int sum = 0;
IntWritable val;
for (Iterator i = values.iterator(); i.hasNext(); sum += val.get()) {
val = (IntWritable) i.next();
}
this.result.set(sum);
context.write(key, this.result);
}
}
public static void main(String[] args)
throws IOException, ClassNotFoundException, InterruptedException {
FileUtil.deleteDir("output");
Configuration cOnf= new Configuration();
String[] otherArgs = new String[]{"input/dream.txt","output"};
if (otherArgs.length != 2) {
System.err.println("Usage:Merge and duplicate removal ");
System.exit(2);
}
Job job = Job.getInstance(conf, "WordCount");
job.setJarByClass(WordCount.class);
job.setMapperClass(WordCount.TokenizerMapper.class);
job.setReducerClass(WordCount.IntSumReduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

执行完成以后。会在project根目录下添加一个output目录。打开output/part-r-00000,内容例如以下:

I 1
a 2
dream 2
have 1

这里在main函数中新增了一个String类型的数组,假设想用main函数的args数组接受參数。在执行时指定输入和输出路径也是能够的。执行WordCount之前,配置Configuration并指定Program arguments就可以。
《MapReduce编程(一) Intellij Idea配置MapReduce编程环境》

七、执行WordCount(从HDFS读取文件)

在HDFS上新建目录:

hadoop fs -mkdir /worddir

假设出现Namenode安全模式导致的不能创建目录提示:

mkdir: Cannot create directory /worddir. Name node is in safe mode.

执行下面命令关闭safe mode:

hadoop dfsadmin -safemode leave

上传本地文件:

hadoop fs -put dream.txt /worddir

改动otherArgs參数,指定输入为文件在HDFS上的路径:

String[] otherArgs = new String[]{"hdfs://localhost:9000/worddir/dream.txt","output"};八、代码下载

代码下载地址:http://download.csdn.net/detail/napoay/9799523


推荐阅读
  • Hadoop MapReduce 实战案例:手机流量使用统计分析
    本文通过一个具体的Hadoop MapReduce案例,详细介绍了如何利用MapReduce框架来统计和分析手机用户的流量使用情况,包括上行和下行流量的计算以及总流量的汇总。 ... [详细]
  • HBase 数据复制与灾备同步策略
    本文探讨了HBase在企业级应用中的数据复制与灾备同步解决方案,包括存量数据迁移及增量数据实时同步的方法。 ... [详细]
  • 流处理中的计数挑战与解决方案
    本文探讨了在流处理中进行计数的各种技术和挑战,并基于作者在2016年圣何塞举行的Hadoop World大会上的演讲进行了深入分析。文章不仅介绍了传统批处理和Lambda架构的局限性,还详细探讨了流处理架构的优势及其在现代大数据应用中的重要作用。 ... [详细]
  • 深入理解云计算与大数据技术
    本文详细探讨了云计算与大数据技术的关键知识点,包括大数据处理平台、社会网络大数据、城市大数据、工业大数据、教育大数据、数据开放与共享的应用,以及搜索引擎与Web挖掘、推荐技术的研究及应用。文章还涵盖了云计算的基础概念、特点和服务类型分类。 ... [详细]
  • 本文介绍了如何在 MapReduce 作业中使用 SequenceFileOutputFormat 生成 SequenceFile 文件,并详细解释了 SequenceFile 的结构和用途。 ... [详细]
  • 如何高效启动大数据应用之旅?
    在前一篇文章中,我探讨了大数据的定义及其与数据挖掘的区别。本文将重点介绍如何高效启动大数据应用项目,涵盖关键步骤和最佳实践,帮助读者快速踏上大数据之旅。 ... [详细]
  • 本文将介绍如何编写一些有趣的VBScript脚本,这些脚本可以在朋友之间进行无害的恶作剧。通过简单的代码示例,帮助您了解VBScript的基本语法和功能。 ... [详细]
  • 本文探讨了Hive中内部表和外部表的区别及其在HDFS上的路径映射,详细解释了两者的创建、加载及删除操作,并提供了查看表详细信息的方法。通过对比这两种表类型,帮助读者理解如何更好地管理和保护数据。 ... [详细]
  • 本文详细介绍了如何在Linux系统上安装和配置Smokeping,以实现对网络链路质量的实时监控。通过详细的步骤和必要的依赖包安装,确保用户能够顺利完成部署并优化其网络性能监控。 ... [详细]
  • 本文详细探讨了Java中的24种设计模式及其应用,并介绍了七大面向对象设计原则。通过创建型、结构型和行为型模式的分类,帮助开发者更好地理解和应用这些模式,提升代码质量和可维护性。 ... [详细]
  • 本文详细介绍了 Dockerfile 的编写方法及其在网络配置中的应用,涵盖基础指令、镜像构建与发布流程,并深入探讨了 Docker 的默认网络、容器互联及自定义网络的实现。 ... [详细]
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • 全面解读Apache Flink的核心架构与优势
    Apache Flink作为大数据处理领域的新兴力量,凭借其独特的流处理能力和高效的批处理性能,迅速获得了广泛的关注。本文旨在深入探讨Flink的关键技术特点及其应用场景,为大数据处理提供新的视角。 ... [详细]
  • 深入浅出:Hadoop架构详解
    Hadoop作为大数据处理的核心技术,包含了一系列组件如HDFS(分布式文件系统)、YARN(资源管理框架)和MapReduce(并行计算模型)。本文将通过实例解析Hadoop的工作原理及其优势。 ... [详细]
  • 2012年9月12日优酷土豆校园招聘笔试题目解析与备考指南
    2012年9月12日,优酷土豆校园招聘笔试题目解析与备考指南。在选择题部分,有一道题目涉及中国人的血型分布情况,具体为A型30%、B型20%、O型40%、AB型10%。若需确保在随机选取的样本中,至少有一人为B型血的概率不低于90%,则需要选取的最少人数是多少?该问题不仅考察了概率统计的基本知识,还要求考生具备一定的逻辑推理能力。 ... [详细]
author-avatar
humphrey7247
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有