热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

【脉冲版ResNet】浙大&川大提出:继承ResNet优势,实现当前最佳

今天看到一篇文章,晚点细看论文。转自知乎:选自arXiv,作者:YangfanHu等,机器之心编译。脉冲神经网络(SNN)具有生物学上的合理性,并且其计

今天看到一篇文章,晚点细看论文。

转自知乎:选自arXiv,作者:Yangfan Hu等,机器之心编译。

脉冲神经网络(SNN)具有生物学上的合理性,并且其计算潜能和传统神经网络相同,主要障碍在于训练难度。为解决这个问题,浙江大学和四川大学近日提出了脉冲版的深度残差网络 Spiking ResNet。为解决模型转换的问题,研究者提出了一种新机制,对连续值的激活函数进行标准化,以匹配脉冲神经网络中的脉冲激发频率,并设法减少离散化带来的误差。在多个基准数据集上的实验结果表明,该网络取得了脉冲神经网络的当前最佳性能。

引言

研究表明,脉冲神经网络 [21] 是一种弥合模型性能和计算开销之间鸿沟的解决方案。从理论上讲,脉冲神经网络可以像人工神经网络(ANN)一样逼近任意的函数。与传统的人工神经网络(ANN)不同,脉冲神经网络的神经元通过离散的事件(尖峰脉冲)不是连续值的激活函数来相互通信。当事件到达时,这个系统会被异步更新,从而减少在每个时间步上所需要的运算步数。最新的研究进展表明,脉冲神经网络可以通过像 TrueNorth [24],SpiNNaker[9],以及 Rolls [26] 这样的神经形态的硬件来模拟,其能量消耗比当前的计算机硬件少几个数量级

此外,由于其基于事件的特性,脉冲神经网络天生就适合处理从具有低冗余、低延迟和高动态范围的基于 AER(地址时间表达)的传感器那里得到的输入数据,例如:动态视觉传感器(DVS)[19] 和听觉传感器(硅耳蜗)[20]。最近的一项研究 [28] 指出,脉冲立体神经网络的实现比基于经典绝对误差和(SAD)算法的微控制器的实现少消耗大约一个数量级的能量。

如今,脉冲神经网络所面临的一大挑战是如何找到一种有效的训练算法克服脉冲的不连续性,并且获得和人工神经网络(ANN)相当的性能。转换方法,即通过训练一个传统的人工神经网络并建立一个转换算法,将权重映射到一个等价的脉冲神经网络中去,取得了迄今为止最好的性能。然而,对一个非常深的人工神经网络进行转换的难题在这之前从未被解决过。

在本文中,我们研究了基于残差神经网络 [11] 的深度脉冲神经网络的学习,这是一种非常前沿的卷积神经网络(CNN)架构,它在许多数据集上取得了非常好的性能,并且大大增加了网络的深度。

在假设被转化的残差神经网络仍然具有它原本的优势的前提条件下,我们将一个预训练好的残差神经网络转换到它的脉冲版本。为了放缩连续值的激活函数使其适用于脉冲神经网络,我们开发了一种快捷正则化技术去标准化快捷连接并且在整个脉冲神经网络上保持了单元的最大脉冲激发频率,换言之,每一层上的神经元能够达到理论上最大的脉冲激发频率(每个时间步都会激活脉冲)。我们还提出了一种分层的误差补偿方法,通过减少每一层的采样误差来提高近似程度。

图 1: 脉冲残差网络架构示意图。

构建脉冲残差网络

起初,研究者们提出用残差神经网络解决深度神经网络退化的问题。由于意识到一个通过增加恒等识别层构建的深度网络不会比原来的浅层网络性能差,He 等人 [11] 用堆叠起来的非线形层去接近 F(x) := H(x) − x 的映射,其中 H(x) 是所需的潜在的映射。接着,原始的映射就变成了一个残差映射:H(x) = F(x) + x。它们假设残差映射更容易通过现有的优化方法来优化,并且通过实证证明了他们的假设。他们的实验表明,残差网络能够在非常大的深度下获得出色的性能。受到他们成果的启发,我们假设残差神经网络的脉冲版本继承了残差神经网络的优势,并且通过脉冲残差网络探索了学习非常深的脉冲神经网络的未知领域。

与其它的深度脉冲神经网络的对比

在表 1 中,我们总结了在 MNIST、CIFAR-10、CIFAR-100 数据集上得到的结果,并且与其它的深度脉冲神经网络的结果进行了比较。此处,我们定义深度时考虑了神经网络中所有可以学习权重的层,即卷基层和全连接层。在上述三个数据集上,我们的脉冲残差网络取得了比其它的深度脉冲神经网络更好的性能。在 MNIST 数据集上,我们实现了对 ResNet-8 的无损转换,并且得到了 99.59% 的准确率。我们没有在 MNIST 上用更深的网络进行实验,因为我们相信一个较浅的网络所做的工作已经足以学到这些手写数字背后的隐藏映射。在 CIFAR-10 数据集上,深度为 44 的脉冲残差网络取得了(脉冲神经网络中)最佳的性能 92.37%,它也是目前最深的前馈脉冲神经网络。原始的深度为 44 的残差神经网络的准确率是 92.85%,由转换导致的精度损失是 0.48%,这与其它的深度脉冲神经网络相比已经相当低了。在 CIFAR-100 数据集上,深度为 44 的脉冲残差网络也取得了很好的性能,准确率达到了 68.56%,转换过程导致准确率降低了 1.62%。

表 1:和其他的转化方法在 MNIST,CIFAR-10 和 CIFAR-100 数据集上的对比。

快捷正则化技术的实验

为了评估快捷正则化的有效性,我们在 CIFAR-10 数据集上训练了深度为 20、32、44、56、110 的残差神经网络,并且将它们转换为带有/不带有快捷正则化的脉冲残差网络。表 2 给出了原始的残差神经网络和相应的带有/不带有快捷正则化的脉冲残差网络所取得的识别准确率。在所有的不同深度的脉冲神经网络中,带有快捷正则化的网络都比不带快捷正则化的网络性能更好。随着深度从 20 增大到 32、44、56、110,他们相应的性能差距也从 2.34% 增大到 6.32%、7.42%、8.31%、8.59%。随着网络的加深,不带快捷正则化的脉冲神经网络比带有快捷正则化的脉冲神经网络受到的性能损失也随之增大。此外,带有快捷正则化的脉冲神经网络的性能在深度为 20、32、44、56 时十分稳定。在深度为 20 时,转换后的性能仅仅下降了 0.20%。

表 2: 残差神经网络和脉冲残差网络(带有/不带有快捷正则化技术)在 CIFAR-10 数据集上的分类准确率。
图 4: 普通网络和残差网络在 CIFAR-10 数据集上转化效率的对比。
图 5: 普通人工神经网络(ANN)和残差人工神经网络的对比。

论文:Spiking Deep Residual Network

论文链接:arxiv.org/abs/1805.0135

摘要:近一段时间以来,脉冲神经网络因其生物学上的合理性受到了广泛的关注。从理论上讲,脉冲神经网络至少与传统的人工神经网络(ANN)具有相同的计算能力,并且有潜力实现革命性的高效节能。然而,当前的状况是,训练一个非常深的 SNN 是一个巨大的挑战。在本文中,我们提出了一个高效的方法去构建一个脉冲版的深度残差网络(ResNet),它也代表了最先进的卷积神经网络(CNN)。我们将训练好的残差神经网络(ResNet)转换成一个脉冲神经元组成的网络,并将该网络命名为「脉冲残差网络(Spiking ResNet)」。为了解决这个转换的问题,我们提出了一种快捷的正则化机制,适当地对连续值的激活函数进行放缩(标准化),用来匹配脉冲神经网络中的脉冲激发频率。并且,我们还采用了分层的误差补偿方法来减少离散化带来的误差。我们在 MNIST、CIFAR-10 和 CIFAR-100 数据集上的实验结果表明,我们提出的脉冲残差网络取得了脉冲神经网络当前最佳性能。



推荐阅读
  • 探索电路与系统的起源与发展
    本文回顾了电路与系统的发展历程,从电的早期发现到现代电子器件的应用。文章不仅涵盖了基础理论和关键发明,还探讨了这一学科对计算机、人工智能及物联网等领域的深远影响。 ... [详细]
  • 尽管深度学习带来了广泛的应用前景,其训练通常需要强大的计算资源。然而,并非所有开发者都能负担得起高性能服务器或专用硬件。本文探讨了如何在有限的硬件条件下(如ARM CPU)高效运行深度神经网络,特别是通过选择合适的工具和框架来加速模型推理。 ... [详细]
  • 机器学习核心概念与技术
    本文系统梳理了机器学习的关键知识点,涵盖模型评估、正则化、线性模型、支持向量机、决策树及集成学习等内容,并深入探讨了各算法的原理和应用场景。 ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • 本文详细介绍了macOS系统的核心组件,包括如何管理其安全特性——系统完整性保护(SIP),并探讨了不同版本的更新亮点。对于使用macOS系统的用户来说,了解这些信息有助于更好地管理和优化系统性能。 ... [详细]
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
  • 2018年3月31日,CSDN、火星财经联合中关村区块链产业联盟等机构举办的2018区块链技术及应用峰会(BTA)核心分会场圆满举行。多位业内顶尖专家深入探讨了区块链的核心技术原理及其在实际业务中的应用。 ... [详细]
  • 本文作者分享了在阿里巴巴获得实习offer的经历,包括五轮面试的详细内容和经验总结。其中四轮为技术面试,一轮为HR面试,涵盖了大量的Java技术和项目实践经验。 ... [详细]
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 深入解析Java虚拟机(JVM)架构与原理
    本文旨在为读者提供对Java虚拟机(JVM)的全面理解,涵盖其主要组成部分、工作原理及其在不同平台上的实现。通过详细探讨JVM的结构和内部机制,帮助开发者更好地掌握Java编程的核心技术。 ... [详细]
  • 程序员如何优雅应对35岁职业转型?这里有深度解析
    本文探讨了程序员在职业生涯中如何通过不断学习和技能提升,优雅地应对35岁左右的职业转型挑战。我们将深入分析当前热门技术趋势,并提供实用的学习路径。 ... [详细]
  • 由中科院自动化所、中科院大学及南昌大学联合研究提出了一种新颖的双路径生成对抗网络(TP-GAN),该技术能通过单一侧面照片生成逼真的正面人脸图像,显著提升了不同姿态下的人脸识别效果。 ... [详细]
  • 本文探讨了 C++ 中普通数组和标准库类型 vector 的初始化方法。普通数组具有固定长度,而 vector 是一种可扩展的容器,允许动态调整大小。文章详细介绍了不同初始化方式及其应用场景,并提供了代码示例以加深理解。 ... [详细]
  • 深入理解Java字符串池机制
    本文详细解析了Java中的字符串池(String Pool)机制,探讨其工作原理、实现方式及其对性能的影响。通过具体的代码示例和分析,帮助读者更好地理解和应用这一重要特性。 ... [详细]
author-avatar
华华eva3
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有