热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

麻省理工学院2021最新深度学习导论

课程描述麻省理工学院的深度学习算法入门课程,应用于计算机视觉、自然语言处理、生物学等等!学生将学习深度学习算法的基础知识,并学习在Tens

图片

课程描述

    麻省理工学院的深度学习算法入门课程,应用于计算机视觉、自然语言处理、生物学等等!学生将学习深度学习算法的基础知识,并学习在Tensorflow中构建神经网络的实践经验。课程以项目建议书竞赛结束,由员工和行业赞助商小组提供反馈。学生需要具备微积分(也就是取导数)和线性代数(也就是矩阵乘法)等基础知识,整个课程进行过程中都需要这些知识!Python方面的经验有帮助但不是必须的。

 

    本zx: https://mp.weixin.qq.com/s?__biz=MzIxNDgzNDg3NQ==&mid=2247492765&idx=1&sn=cc38053db93277c240e26b4150194bce&chksm=97a32f49a0d4a65f11b17ed278d844869de4d58fe663d6a3e0cd130458f86bb51a027e6ac931&token=1332523818&lang=zh_CN#rd

 

课程主页

http://introtodeeplearning.com/

 

课程大纲

图片

 

课程主讲人

图片

 

课程视频截图

图片

图片

图片

图片

图片

 

本zx: https://mp.weixin.qq.com/s?__biz=MzIxNDgzNDg3NQ==&mid=2247492765&idx=1&sn=cc38053db93277c240e26b4150194bce&chksm=97a32f49a0d4a65f11b17ed278d844869de4d58fe663d6a3e0cd130458f86bb51a027e6ac931&token=1332523818&lang=zh_CN#rd


推荐阅读
  • 本文探讨了图像标签的多种分类场景及其在以图搜图技术中的应用,涵盖了从基础理论到实际项目实施的全面解析。 ... [详细]
  • 尽管深度学习带来了广泛的应用前景,其训练通常需要强大的计算资源。然而,并非所有开发者都能负担得起高性能服务器或专用硬件。本文探讨了如何在有限的硬件条件下(如ARM CPU)高效运行深度神经网络,特别是通过选择合适的工具和框架来加速模型推理。 ... [详细]
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 深入浅出TensorFlow数据读写机制
    本文详细介绍TensorFlow中的数据读写操作,包括TFRecord文件的创建与读取,以及数据集(dataset)的相关概念和使用方法。 ... [详细]
  • 在Ubuntu 16.04中使用Anaconda安装TensorFlow
    本文详细介绍了如何在Ubuntu 16.04系统上通过Anaconda环境管理工具安装TensorFlow。首先,需要下载并安装Anaconda,然后配置环境变量以确保系统能够识别Anaconda命令。接着,创建一个特定的Python环境用于安装TensorFlow,并通过指定的镜像源加速安装过程。最后,通过一个简单的线性回归示例验证TensorFlow的安装是否成功。 ... [详细]
  • 吴恩达推出TensorFlow实践课程,Python基础即可入门,四个月掌握核心技能
    量子位报道,deeplearning.ai最新发布了TensorFlow实践课程,适合希望使用TensorFlow开发AI应用的学习者。该课程涵盖机器学习模型构建、图像识别、自然语言处理及时间序列预测等多个方面。 ... [详细]
  • 本文详细介绍了 TensorFlow 的入门实践,特别是使用 MNIST 数据集进行数字识别的项目。文章首先解析了项目文件结构,并解释了各部分的作用,随后逐步讲解了如何通过 TensorFlow 实现基本的神经网络模型。 ... [详细]
  • 本文介绍了一个使用Keras框架构建的卷积神经网络(CNN)实例,主要利用了Keras提供的MNIST数据集以及相关的层,如Dense、Dropout、Activation等,构建了一个具有两层卷积和两层全连接层的CNN模型。 ... [详细]
  • 精选10款Python框架助力并行与分布式机器学习
    随着神经网络模型的不断深化和复杂化,训练这些模型变得愈发具有挑战性,不仅需要处理大量的权重,还必须克服内存限制等问题。本文将介绍10款优秀的Python框架,帮助开发者高效地实现分布式和并行化的深度学习模型训练。 ... [详细]
  • 2017年人工智能领域的十大里程碑事件回顾
    随着2018年的临近,我们一同回顾过去一年中人工智能领域的重要进展。这一年,无论是政策层面的支持,还是技术上的突破,都显示了人工智能发展的迅猛势头。以下是精选的2017年人工智能领域最具影响力的事件。 ... [详细]
  • 利用Java与Tesseract-OCR实现数字识别
    本文深入探讨了如何利用Java语言结合Tesseract-OCR技术来实现图像中的数字识别功能,旨在为开发者提供详细的指导和实践案例。 ... [详细]
  • 如何用GPU服务器运行Python
    如何用GPU服务器运行Python-目录前言一、服务器登录1.1下载安装putty1.2putty远程登录 1.3查看GPU、显卡常用命令1.4Linux常用命令二、 ... [详细]
  • 吴裕雄探讨混合神经网络模型在深度学习中的应用:结合RNN与CNN优化网络性能
    本文由吴裕雄撰写,深入探讨了如何利用Python、Keras及TensorFlow构建混合神经网络模型,特别是通过结合递归神经网络(RNN)和卷积神经网络(CNN),实现对网络运行效率的有效提升。 ... [详细]
  • 自然语言处理(NLP)——LDA模型:对电商购物评论进行情感分析
    目录一、2020数学建模美赛C题简介需求评价内容提供数据二、解题思路三、LDA简介四、代码实现1.数据预处理1.1剔除无用信息1.1.1剔除掉不需要的列1.1.2找出无效评论并剔除 ... [详细]
  • 独家解析:深度学习泛化理论的破解之道与应用前景
    本文深入探讨了深度学习泛化理论的关键问题,通过分析现有研究和实践经验,揭示了泛化性能背后的核心机制。文章详细解析了泛化能力的影响因素,并提出了改进模型泛化性能的有效策略。此外,还展望了这些理论在实际应用中的广阔前景,为未来的研究和开发提供了宝贵的参考。 ... [详细]
author-avatar
恋苦尘雪77
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有