作者:陈婉恩上源 | 来源:互联网 | 2023-09-18 10:21
本文主要介绍关于matlab,算法,开发语言,量子遗传算法的知识点,对《MATLAB智能算法30个案例》:第8章基于量子遗传算法的函数寻优算法和遗传算法经典matlab有兴趣的朋友可以看下由【moz
本文主要介绍关于matlab,算法,开发语言,量子遗传算法的知识点,对《MATLAB智能算法30个案例》:第8章 基于量子遗传算法的函数寻优算法和遗传算法经典matlab有兴趣的朋友可以看下由【mozun2020】投稿的技术文章,希望该技术和经验能帮到你解决你所遇的MATLAB智能算法30个案例相关技术问题。
遗传算法经典matlab
《MATLAB智能算法30个案例》:第8章 基于量子遗传算法的函数寻优算法 1. 前言2. MATLAB 仿真示例3. 小结
1. 前言
《MATLAB智能算法30个案例分析》是2011年7月1日由北京航空航天大学出版社出版的图书,作者是郁磊、史峰、王辉、胡斐。本书案例是各位作者多年从事算法研究的经验总结。书中所有案例均因国内各大MATLAB技术论坛网友的切身需求而精心设计,其中不少案例所涉及的内容和求解方法在国内现已出版的MATLAB书籍中鲜有介绍。《MATLAB智能算法30个案例分析》采用案例形式,以智能算法为主线,讲解了遗传算法、免疫算法、退火算法、粒子群算法、鱼群算法、蚁群算法和神经网络算法等最常用的智能算法的MATLAB实现。
本书共给出30个案例,每个案例都是一个使用智能算法解决问题的具体实例,所有案例均由理论讲解、案例背景、MATLAB程序实现和扩展阅读四个部分组成,并配有完整的原创程序,使读者在掌握算法的同时更能快速提高使用算法求解实际问题的能力。《MATLAB智能算法30个案例分析》可作为本科毕业设计、研究生项目设计、博士低年级课题设计参考书籍,同时对广大科研人员也有很高的参考价值。
《MATLAB智能算法30个案例分析》与《MATLAB 神经网络43个案例分析》一样,都是由北京航空航天大学出版社出版,其中的智能算法应该是属于神经网络兴起之前的智能预测分类算法的热门领域,在数字信号处理,如图像和语音相关方面应用较为广泛。本系列文章结合MATLAB与实际案例进行仿真复现,有不少自己在研究生期间与工作后的学习中有过相关学习应用,这次复现仿真示例进行学习,希望可以温故知新,加强并提升自己在智能算法方面的理解与实践。下面开始进行仿真示例,主要以介绍各章节中源码应用示例为主,本文主要基于MATLAB2015b(32位)平台仿真实现,这是本书第八章量子遗传算法的函数寻优算法实例,话不多说,开始!
2. MATLAB 仿真示例
打开MATLAB,点击“主页”,点击“打开”,找到示例文件
选中QuantumMain.m,点击“打开”
QuantumMain.m源码如下:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%功能:基于量子遗传算法的函数寻优算法示例
%环境:Win7,Matlab2015b
%Modi: C.S
%时间:2022-07-5
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 清空环境
clc
clear all
close all
tic
%----------------参数设置-----------------------
MAXGEN=200; % 最大遗传代数
sizepop=40; % 种群大小
lenchrom=[20 20]; % 每个变量的二进制长度
trace=zeros(1,MAXGEN);
%--------------------------------------------------------------------------
best=struct('fitness',0,'X',[],'binary',[],'chrom',[]); % 最佳个体 记录其适应度值、十进制值、二进制编码、量子比特编码
%% 初始化种群
chrom=InitPop(sizepop*2,sum(lenchrom));
%% 对种群实施一次测量 得到二进制编码
binary=collapse(chrom);
%% 求种群个体的适应度值,和对应的十进制值
[fitness,X]=FitnessFunction(binary,lenchrom); % 使用目标函数计算适应度
%% 记录最佳个体到best
[best.fitness bestindex]=max(fitness); % 找出最大值
best.binary=binary(bestindex,:);
best.chrom=chrom([2*bestindex-1:2*bestindex],:);
best.X=X(bestindex,:);
trace(1)=best.fitness;
fprintf('%d\n',1)
%% 进化
for gen=2:MAXGEN
fprintf('%d\n',gen) %提示进化代数
%% 对种群实施一次测量
binary=collapse(chrom);
%% 计算适应度
[fitness,X]=FitnessFunction(binary,lenchrom);
%% 量子旋转门
chrom=Qgate(chrom,fitness,best,binary);
[newbestfitness,newbestindex]=max(fitness); % 找到最佳值
% 记录最佳个体到best
if newbestfitness>best.fitness
best.fitness=newbestfitness;
best.binary=binary(newbestindex,:);
best.chrom=chrom([2*newbestindex-1:2*newbestindex],:);
best.X=X(newbestindex,:);
end
trace(gen)=best.fitness;
end
%% 画进化曲线
plot(1:MAXGEN,trace);
title('进化过程');
xlabel('进化代数');
ylabel('每代的最佳适应度');
%% 显示优化结果
disp(['最优解X:',num2str(best.X)])
disp(['最大值Y:',num2str(best.fitness)]);
toc
添加完毕,点击“运行”,开始仿真,输出仿真结果如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
最优解X:11.6255 5.72504
最大值Y:17.3503
时间已过 1.879968 秒。
3. 小结
量子遗传算法是量子计算与遗传算法相结合的产物。这一领域的研究主要集中在两类模型上:一类是基于量子多宇宙特征的多宇宙量子衍生遗传算法(Quantum Inspired Genetic Algorithm),另一类是基于量子比特和量子态叠加特性的遗传量子算法(Genetic Quantum Algorithm,GQA)。
前者的贡献在于将量子多宇宙的概念引入遗传算法,利用多个宇宙的并行搜索,增大搜索范围,利用宇宙之间的联合交叉,实现信息的交流,从而整体上提高了算法的搜索效率。但算法中的多宇宙是通过分别产生多个种群获得的,并没有利用量子态,因而仍属于常规遗传算法。后者将量子的态矢量表达引入遗传编码,利用量子旋转门实现染色体的演化,实现了比常规遗传算法更好的效果。但该算法主要用来解决0-1背包问题。编码方案和量子旋转门的演化策略不具有通用性,尤其是由于所有个体都朝一个目标演化,如果没有交叉操作,极有可能陷入局部最优。
对本章内容感兴趣或者想充分学习了解的,建议去研习书中第八章节的内容。后期会对其中一些知识点在自己理解的基础上进行补充,欢迎大家一起学习交流。
本文《《MATLAB智能算法30个案例》:第8章 基于量子遗传算法的函数寻优算法》版权归mozun2020所有,引用《MATLAB智能算法30个案例》:第8章 基于量子遗传算法的函数寻优算法需遵循CC 4.0 BY-SA版权协议。