热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Linuxarm64系统调用过程学习记录

Linux5.10arm64系统调用过程

Linux5.10 arm64 系统调用过程学习记录

      • 简介
      • 用户态
      • svc
      • 进入内核态
      • 找到系统调用函数
      • 相关数据结构
      • 系统调用表
      • 参考

简介

进程使用标准库例程,库例程接下来调用内核函数,最终,由内核负责在各个请求进程之间公平而且流畅地共享资源和服务

用户态

#include

int main()
{
FILE *fp = NULL;
// w 打开一个文本文件,允许写入文件。如果文件不存在,则会创建一个新文件
fp = fopen("test.txt", "w");
fprintf(fp, "test\n");
fclose(fp);
}

编译,追踪

uname -a
Linux 5.11.0-27-generic #29~20.04.1-Ubuntu SMP Wed Aug 11 15:58:17 UTC 2021 x86_64 x86_64 x86_64 GNU/Linux
gcc write_test.c -o write_test
ldd write_test # ldd 用于打印程序或者库文件所依赖的共享库列表
# 待补

svc

用户层进入内核态执行系统调用函数,通过异常方式(库函数完成),将当前系统调用函数的调用号放入x8寄存器,然后使用svc 指令,发起同步异常。参考[1]

Supervisor Call causes an exception to be taken to EL1.On executing an SVC instruction, the PE records the exception as a Supervisor Call exception in ESR_ELx, using the EC value 0x15 , and the value of the immediate argument.

进入内核态

以下源码参考:linux-5.10

// arch/arm64/kernel/entry.S
// 中断向量入口:
SYM_CODE_START(vectors)
kernel_ventry 1, sync_invalid // Synchronous EL1t
kernel_ventry 1, irq_invalid // IRQ EL1t
kernel_ventry 1, fiq_invalid // FIQ EL1t
kernel_ventry 1, error_invalid // Error EL1t
kernel_ventry 1, sync // Synchronous EL1h
kernel_ventry 1, irq // IRQ EL1h
kernel_ventry 1, fiq_invalid // FIQ EL1h
kernel_ventry 1, error // Error EL1h
kernel_ventry 0, sync // Synchronous 64-bit EL0 ,同步异常处理入口: 包括系统调用
kernel_ventry 0, irq // IRQ 64-bit EL0
kernel_ventry 0, fiq_invalid // FIQ 64-bit EL0
kernel_ventry 0, error // Error 64-bit EL0
// kernel_ventry 宏处理过程
.macro kernel_ventry, el, label, regsize = 64
.align 7
sub sp, sp, #S_FRAME_SIZE
b el\()\el\()_\label // 展开为: b el0_sync // 跳转到el0_sync
.endm
SYM_CODE_START_LOCAL_NOALIGN(el0_sync)
kernel_entry 0 // 保存用户态在寄存器数据
mov x0, sp
bl el0_sync_handler // el0_sync 处理函数
b ret_to_user
SYM_CODE_END(el0_sync)

找到系统调用函数

// arch/arm64/kernel/entry-common.c
asmlinkage void noinstr el0_sync_handler(struct pt_regs *regs) {
unsigned long esr = read_sysreg(esr_el1);
switch (ESR_ELx_EC(esr)) {
// arch/arm64/include/asm :
// #define ESR_ELx_EC_SVC64 (0x15)
case ESR_ELx_EC_SVC64:
el0_svc(regs);
break;
... // 其他异常
}
}
static void noinstr el0_svc(struct pt_regs *regs) {
...
do_el0_svc(regs);
}
// arch/arm64/kernel/syscall.c
void do_el0_svc(struct pt_regs *regs){
sve_user_discard();
// __NR_syscalls 系统调用总数
// sys_call_table 系统调用表 它每个系统调用的size是.long,即4byte
el0_svc_common(regs, regs->regs[8], __NR_syscalls, sys_call_table);
}
static void el0_svc_common(struct pt_regs *regs, int scno, int sc_nr,
const syscall_fn_t syscall_table[]) {
unsigned long flags = current_thread_info()->flags;
regs->orig_x0 = regs->regs[0];
regs->syscallno = scno;
....
invoke_syscall(regs, scno, sc_nr, syscall_table);
....
}
static void invoke_syscall(struct pt_regs *regs, unsigned int scno,
unsigned int sc_nr,
const syscall_fn_t syscall_table[])
{
long ret;
if (scno < sc_nr) {
syscall_fn_t syscall_fn;
syscall_fn = syscall_table[array_index_nospec(scno, sc_nr)];
ret = __invoke_syscall(regs, syscall_fn);
} else {
// 未定义的系统调用,返回—ENOSYS
ret = do_ni_syscall(regs, scno);
}
if (is_compat_task())
ret = lower_32_bits(ret);
regs->regs[0] = ret;
}
static long __invoke_syscall(struct pt_regs *regs, syscall_fn_t syscall_fn){
return syscall_fn(regs);
}

相关数据结构

// arch/arm64/include/asm/ptrace.h
struct pt_regs {
union {
struct user_pt_regs user_regs;
struct {
u64 regs[31];
u64 sp;
u64 pc;
u64 pstate;
};
};
u64 orig_x0;
#ifdef __AARCH64EB__
u32 unused2;
s32 syscallno;
#else
s32 syscallno;
u32 unused2;
#endif
u64 orig_addr_limit;
/* Only valid when ARM64_HAS_IRQ_PRIO_MASKING is enabled. */
u64 pmr_save;
u64 stackframe[2];
/* Only valid for some EL1 exceptions. */
u64 lockdep_hardirqs;
u64 exit_rcu;
};
// arch/arm64/include/asm/syscall.h
typedef long (*syscall_fn_t)(const struct pt_regs *regs);

系统调用表

// arch/arm64/kernel/sys.c
#undef __SYSCALL
#define __SYSCALL(nr, sym) asmlinkage long __arm64_##sym(const struct pt_regs *);
#include
// 对于ARM64架构,头文件“asm/unistd.h”是“arch/arm64/include/asm/unistd.h”。
#undef __SYSCALL
#define __SYSCALL(nr, sym) [nr] = __arm64_##sym,
const syscall_fn_t sys_call_table[__NR_syscalls] = {
[0 ... __NR_syscalls - 1] = __arm64_sys_ni_syscall,
#include
};
// arch/arm64/include/asm/unistd.h
#include
#define NR_syscalls (__NR_syscalls)
#define __ARCH_WANT_RENAMEAT
#define __ARCH_WANT_NEW_STAT
#define __ARCH_WANT_SET_GET_RLIMIT
#define __ARCH_WANT_TIME32_SYSCALLS
#define __ARCH_WANT_SYS_CLONE3
#include
// include/uapi/asm-generic/unistd.h
#define __NR_io_setup 0
__SC_COMP(__NR_io_setup, sys_io_setup, compat_sys_io_setup)
#define __NR_io_destroy 1
__SYSCALL(__NR_io_destroy, sys_io_destroy)
....
#define __NR_syscalls 441

通过上面文件的展开, 系统调用表为:

const syscall_fn_t sys_call_table[__NR_syscalls] = {
[0 ... __NR_syscalls - 1] = __arm64_sys_ni_syscall,__arm64_compat_sys_io_setup,__arm64_sys_io_destroy,......
};

系统调用宏

// arch/arm64/include/asm/syscall_wrapper.h
#define __SYSCALL_DEFINEx(x, name, ...) \
asmlinkage long __arm64_sys##name(const struct pt_regs *regs); \
ALLOW_ERROR_INJECTION(__arm64_sys##name, ERRNO); \
static long __se_sys##name(__MAP(x,__SC_LONG,__VA_ARGS__)); \
static inline long __do_sys##name(__MAP(x,__SC_DECL,__VA_ARGS__)); \
asmlinkage long __arm64_sys##name(const struct pt_regs *regs) \
{ \
return __se_sys##name(SC_ARM64_REGS_TO_ARGS(x,__VA_ARGS__)); \
} \
static long __se_sys##name(__MAP(x,__SC_LONG,__VA_ARGS__)) \
{ \
long ret = __do_sys##name(__MAP(x,__SC_CAST,__VA_ARGS__)); \
__MAP(x,__SC_TEST,__VA_ARGS__); \
__PROTECT(x, ret,__MAP(x,__SC_ARGS,__VA_ARGS__)); \
return ret; \
} \
static inline long __do_sys##name(__MAP(x,__SC_DECL,__VA_ARGS__))

#define SYSCALL_DEFINE0(sname) \
SYSCALL_METADATA(_##sname, 0); \
asmlinkage long __arm64_sys_##sname(const struct pt_regs *__unused); \
ALLOW_ERROR_INJECTION(__arm64_sys_##sname, ERRNO); \
asmlinkage long __arm64_sys_##sname(const struct pt_regs *__unused)

// include/linux/syscalls.h
#ifndef SYSCALL_DEFINE0
#define SYSCALL_DEFINE0(sname) \
SYSCALL_METADATA(_##sname, 0); \
asmlinkage long sys_##sname(void); \
ALLOW_ERROR_INJECTION(sys_##sname, ERRNO); \
asmlinkage long sys_##sname(void)

#endif /* SYSCALL_DEFINE0 */
#define SYSCALL_DEFINE1(name, ...) SYSCALL_DEFINEx(1, _##name, __VA_ARGS__)
#define SYSCALL_DEFINE2(name, ...) SYSCALL_DEFINEx(2, _##name, __VA_ARGS__)
#define SYSCALL_DEFINE3(name, ...) SYSCALL_DEFINEx(3, _##name, __VA_ARGS__)
#define SYSCALL_DEFINE4(name, ...) SYSCALL_DEFINEx(4, _##name, __VA_ARGS__)
#define SYSCALL_DEFINE5(name, ...) SYSCALL_DEFINEx(5, _##name, __VA_ARGS__)
#define SYSCALL_DEFINE6(name, ...) SYSCALL_DEFINEx(6, _##name, __VA_ARGS__)
#define SYSCALL_DEFINE_MAXARGS 6
#define SYSCALL_DEFINEx(x, sname, ...) \
SYSCALL_METADATA(sname, x, __VA_ARGS__) \
__SYSCALL_DEFINEx(x, sname, __VA_ARGS__)

对于 write 系统调用宏展开

#define __NR_write 64 __SYSCALL(__NR_write, sys_write)
asmlinkage long __arm64_sys_write(const struct pt_regs *);
SYSCALL_DEFINE3(write, unsigned int, fd, const char __user *, buf, size_t, count) {
return ksys_write(fd, buf, count);
}

参考

  • 1 系统调用实现原理
  • 2 Linux内核系统调用原理与实现
  • 3 Linux系统调用之SYSCALL_DEFINE

版权声明:本文为qq_41146650原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。
原文链接:https://blog.csdn.net/qq_41146650/article/details/124170953
推荐阅读
  • golang常用库:配置文件解析库/管理工具viper使用
    golang常用库:配置文件解析库管理工具-viper使用-一、viper简介viper配置管理解析库,是由大神SteveFrancia开发,他在google领导着golang的 ... [详细]
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • 优化ASM字节码操作:简化类转换与移除冗余指令
    本文探讨如何利用ASM框架进行字节码操作,以优化现有类的转换过程,简化复杂的转换逻辑,并移除不必要的加0操作。通过这些技术手段,可以显著提升代码性能和可维护性。 ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • 本文详细介绍了如何在Linux系统上安装和配置Smokeping,以实现对网络链路质量的实时监控。通过详细的步骤和必要的依赖包安装,确保用户能够顺利完成部署并优化其网络性能监控。 ... [详细]
  • PHP 编程疑难解析与知识点汇总
    本文详细解答了 PHP 编程中的常见问题,并提供了丰富的代码示例和解决方案,帮助开发者更好地理解和应用 PHP 知识。 ... [详细]
  • Python 异步编程:深入理解 asyncio 库(上)
    本文介绍了 Python 3.4 版本引入的标准库 asyncio,该库为异步 IO 提供了强大的支持。我们将探讨为什么需要 asyncio,以及它如何简化并发编程的复杂性,并详细介绍其核心概念和使用方法。 ... [详细]
  • 本文将介绍如何编写一些有趣的VBScript脚本,这些脚本可以在朋友之间进行无害的恶作剧。通过简单的代码示例,帮助您了解VBScript的基本语法和功能。 ... [详细]
  • 本文介绍如何使用Objective-C结合dispatch库进行并发编程,以提高素数计数任务的效率。通过对比纯C代码与引入并发机制后的代码,展示dispatch库的强大功能。 ... [详细]
  • C++实现经典排序算法
    本文详细介绍了七种经典的排序算法及其性能分析。每种算法的平均、最坏和最好情况的时间复杂度、辅助空间需求以及稳定性都被列出,帮助读者全面了解这些排序方法的特点。 ... [详细]
  • 题目描述:给定n个半开区间[a, b),要求使用两个互不重叠的记录器,求最多可以记录多少个区间。解决方案采用贪心算法,通过排序和遍历实现最优解。 ... [详细]
  • 深入理解 SQL 视图、存储过程与事务
    本文详细介绍了SQL中的视图、存储过程和事务的概念及应用。视图为用户提供了一种灵活的数据查询方式,存储过程则封装了复杂的SQL逻辑,而事务确保了数据库操作的完整性和一致性。 ... [详细]
  • Explore how Matterverse is redefining the metaverse experience, creating immersive and meaningful virtual environments that foster genuine connections and economic opportunities. ... [详细]
  • 本文详细介绍如何使用Python进行配置文件的读写操作,涵盖常见的配置文件格式(如INI、JSON、TOML和YAML),并提供具体的代码示例。 ... [详细]
  • Java 中 Writer flush()方法,示例 ... [详细]
author-avatar
发酵床养殖菌种
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有