热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

开课吧:为什么AI工程师都要懂一点架构呢?

AI时代,我们总说做科研的AI科学家、研究员、算法工程师离产业应用太远,这其中的一个含义是说,搞机器学习算法的人,有时候会因

AI时代,我们总说做科研的AI科学家、研究员、算法工程师离产业应用太远,这其中的一个含义是说,搞机器学习算法的人,有时候会因为缺乏架构(Infrastructure)方面的知识、能力而难以将一个好的算法落地。那么,AI工程师都要懂一点架构的具体原因是什么呢?

为什么AI工程师都要懂一点架构呢?

AI工程师都要懂一点架构的原因如下:
原因一:算法实现≠问题解决

学生、研究员、科学家关心的大多是学术和实验性问题,但进入产业界,工程师关心的就是具体的业务问题。简单来说,AI工程师扮演的角色是一个问题的解决者,你的最重要任务是在实际环境中、有资源限制的条件下,用最有效的方法解决问题。只给出结果特别好的算法,是远远不够的。

当然可以说,做算法的专注做算法,其他做架构、应用的帮算法工程师做封装、发布和维护工作。但这里的问题不仅仅是分工这么简单,如果算法工程师完全不懂架构,其实,他根本上就很难在一个团队里协同工作,很难理解架构、应用层面对自己的算法所提出的需求。

为什么AI工程师都要懂一点架构呢?

原因二:问题解决≠现场问题解决

有的算法工程师疏于考虑自己的算法在实际环境中的部署和维护问题,这个是很让人头疼的一件事。面向C端用户的解决方案,部署的时候要考虑serving系统的架构,考虑自己算法所占用的资源、运行的效率、如何升级等实际问题;面向B端用户的解决方案要考虑的因素就更多,因为客户的现场环境,哪怕是客户的私有云环境,都会对你的解决方案有具体的接口、格式、操作系统、依赖关系等需求。

部署和维护工程师会负责这些麻烦事,但算法工程师如果完全不懂得或不考虑这些逻辑,那只会让团队内部合作越来越累。

原因三:工程师需要最快、最好、最有可扩展性地解决问题

AI工程师的首要目的是解决问题,而不是显摆算法有多先进。很多情况下,AI工程师起码要了解一个算法跑在实际环境中的时候,有哪些可能影响算法效率、可用性、可扩展性的因素。

扩展性是另一个大问题,用AI算法解决一个具体问题是一回事,用AI算法实现一个可扩展的解决方案是另一回事。要解决未来可能出现的一大类相似问题,或者把问题的边界扩展到更大的数据量、更多的应用领域,这就要求AI工程师具备最基本的架构知识,在设计算法时,照顾到架构方面的需求了。

原因四:架构知识,是工程师进行高效团队协作的共同语言

AI工程师的确可以在工作时专注于算法,但不能不懂点儿架构,否则,你跟其他工程师该如何协同工作呢?


推荐阅读
  • 开发笔记:哈希的应用
    开发笔记:哈希的应用 ... [详细]
  • 浪潮AI服务器NF5488A5在MLPerf基准测试中刷新多项纪录
    近日,国际权威AI基准测试平台MLPerf发布了最新的推理测试结果,浪潮AI服务器NF5488A5在此次测试中创造了18项性能纪录,显著提升了数据中心AI推理性能。 ... [详细]
  • 深入理解Kafka架构
    本文将详细介绍Kafka的内部工作机制,包括其工作流程、文件存储机制、生产者与消费者的具体实现,以及如何通过高效读写技术和Zookeeper支持来确保系统的高性能和稳定性。 ... [详细]
  • 58同城的Elasticsearch应用与平台构建实践
    本文由58同城高级架构师于伯伟分享,由陈树昌编辑整理,内容源自DataFunTalk。文章探讨了Elasticsearch作为分布式搜索和分析引擎的应用,特别是在58同城的实施案例,包括集群优化、典型应用实例及自动化平台建设等方面。 ... [详细]
  • 我的新书已正式上市,可在当当和京东购买。如果您喜欢本书,欢迎留下宝贵评价。本书历时3至4年完成,内容涵盖MySQL的安装、配置、开发、测试、监控和运维等方面,旨在帮助读者系统地学习MySQL。 ... [详细]
  • 本文探讨了图像标签的多种分类场景及其在以图搜图技术中的应用,涵盖了从基础理论到实际项目实施的全面解析。 ... [详细]
  • 自SQL Server 2005以来,微软的这款数据库产品逐渐崭露头角,成为企业级应用中的佼佼者。本文将探讨SQL Server 2008的革新之处及其对企业级数据库市场的影响。 ... [详细]
  • 本文旨在探讨机器学习与数据分析之间的差异,不仅在于它们处理的数据类型,还包括技术背景、业务应用场景以及参与者的不同。通过深入分析,希望能为读者提供清晰的理解。 ... [详细]
  • 云计算是一种基于互联网的服务模式,用户可以在任何时间、任何地点访问这些服务。这里的‘云’是对互联网的隐喻表达,代表了一种虚拟化的计算资源池。云计算可以分为私有云、公有云、混合云等多种类型,每种类型都有其特定的应用场景和服务对象。 ... [详细]
  • 初探K近邻算法与Scikit-learn API
    本文介绍了Scikit-learn这一强大的机器学习库,重点探讨了其最新稳定版本及其安装方法,并通过一个简单的K近邻算法实例展示了如何使用Scikit-learn进行模型训练和预测。 ... [详细]
  • 李宏毅机器学习笔记:无监督学习之线性方法
    无监督学习主要涵盖两大类别:一是聚类与降维,旨在简化数据结构;二是生成模型,用于从编码生成新的数据样本。本文深入探讨了这些技术的具体应用和理论基础。 ... [详细]
  • 吴恩达推出TensorFlow实践课程,Python基础即可入门,四个月掌握核心技能
    量子位报道,deeplearning.ai最新发布了TensorFlow实践课程,适合希望使用TensorFlow开发AI应用的学习者。该课程涵盖机器学习模型构建、图像识别、自然语言处理及时间序列预测等多个方面。 ... [详细]
  • 本文深入探讨了数据挖掘领域内的十个经典算法,包括但不限于C4.5决策树、K-Means聚类、支持向量机等。这些算法不仅在理论上有深厚的数学基础,也在实践中展现出强大的应用价值。 ... [详细]
  • 强人工智能时代,区块链的角色与前景
    随着强人工智能的崛起,区块链技术在新的技术生态中扮演着怎样的角色?本文探讨了区块链与强人工智能之间的互补关系及其在未来技术发展中的重要性。 ... [详细]
  • 获得头条Offer后,我感激的七个技术公众号
    是否感觉订阅的公众号过多,浏览时缺乏目标性,未能获取实质性的知识?本文将介绍如何精简公众号列表,提升信息吸收效率,并推荐几个高质量的技术公众号。 ... [详细]
author-avatar
big覀bang-5201314
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有