热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

开发笔记:别再纠结线程池大小/线程数量了,没有固定公式的

篇首语:本文由编程笔记#小编为大家整理,主要介绍了别再纠结线程池大小/线程数量了,没有固定公式的相关的知识,希望对你有一定的参考价值。

篇首语:本文由编程笔记#小编为大家整理,主要介绍了别再纠结线程池大小/线程数量了,没有固定公式的相关的知识,希望对你有一定的参考价值。









来源:juejin.cn/post/6948034657321484318









可能很多人都看到过一个线程数设置的理论:





  • CPU 密集型的程序 - 核心数 + 1



  • I/O 密集型的程序 - 核心数 * 2


不会吧,不会吧,真的有人按照这个理论规划线程数?


线程数和CPU利用率的小测试


抛开一些操作系统,计算机原理不谈,说一个基本的理论(不用纠结是否严谨,只为好理解):一个CPU核心,单位时间内只能执行一个线程的指令


那么理论上,我一个线程只需要不停的执行指令,就可以跑满一个核心的利用率。


来写个死循环空跑的例子验证一下:


测试环境:AMD Ryzen 5 3600, 6 - Core, 12 - Threads


public class CPUUtilizationTest {
 public static void main(String[] args) {
  //死循环,什么都不做
  while (true){
  }
 }
}

运行这个例子后,来看看现在CPU的利用率:



别再纠结线程池大小/线程数量了,没有固定公式的

从图上可以看到,我的3号核心利用率已经被跑满了


那基于上面的理论,我多开几个线程试试呢?


public class CPUUtilizationTest {
 public static void main(String[] args) {
  for (int j = 0; j < 6; j++) {
   new Thread(new Runnable() {
    @Override
    public void run() {
     while (true){
     }
    }
   }).start();
  }
 }
}

此时再看CPU利用率,1/2/5/7/9/11 几个核心的利用率已经被跑满:



别再纠结线程池大小/线程数量了,没有固定公式的

那如果开12个线程呢,是不是会把所有核心的利用率都跑满?答案一定是会的:



别再纠结线程池大小/线程数量了,没有固定公式的

如果此时我把上面例子的线程数继续增加到24个线程,会出现什么结果呢?



别再纠结线程池大小/线程数量了,没有固定公式的

从上图可以看到,CPU利用率和上一步一样,还是所有核心100%,不过此时负载已经从11.x增加到了22.x,说明此时CPU更繁忙,线程的任务无法及时执行。


现代CPU基本都是多核心的,比如我这里测试用的AMD 3600,6核心12线程(超线程),我们可以简单的认为它就是12核心CPU。那么我这个CPU就可以同时做12件事,互不打扰。


如果要执行的线程大于核心数,那么就需要通过操作系统的调度了。操作系统给每个线程分配CPU时间片资源,然后不停的切换,从而实现“并行”执行的效果。


但是这样真的更快吗?从上面的例子可以看出,一个线程就可以把一个核心的利用率跑满。如果每个线程都很“霸道”,不停的执行指令,不给CPU空闲的时间,并且同时执行的线程数大于CPU的核心数,就会导致操作系统更频繁的执行切换线程执行,以确保每个线程都可以得到执行。


不过切换是有代价的,每次切换会伴随着寄存器数据更新,内存页表更新等操作。虽然一次切换的代价和I/O操作比起来微不足道,但如果线程过多,线程切换的过于频繁,甚至在单位时间内切换的耗时已经大于程序执行的时间,就会导致CPU资源过多的浪费在上下文切换上,而不是在执行程序,得不偿失。


上面死循环空跑的例子,有点过于极端了,正常情况下不太可能有这种程序。


大多程序在运行时都会有一些 I/O操作,可能是读写文件,网络收发报文等,这些 I/O 操作在进行时时需要等待反馈的。比如网络读写时,需要等待报文发送或者接收到,在这个等待过程中,线程是等待状态,CPU没有工作。此时操作系统就会调度CPU去执行其他线程的指令,这样就完美利用了CPU这段空闲期,提高了CPU的利用率。


上面的例子中,程序不停的循环什么都不做,CPU要不停的执行指令,几乎没有啥空闲的时间。如果插入一段I/O操作呢,I/O 操作期间 CPU是空闲状态,CPU的利用率会怎么样呢?先看看单线程下的结果:


public class CPUUtilizationTest {
 public static void main(String[] args) throws InterruptedException {
  for (int n = 0; n < 1; n++) {
   new Thread(new Runnable() {
    @Override
    public void run() {
     while (true){
                        //每次空循环 1亿 次后,sleep 50ms,模拟 I/O等待、切换
      for (int i = 0; i < 100_000_000l; i++) { 
      }
      try {
       Thread.sleep(50);
      }
      catch (InterruptedException e) {
       e.printStackTrace();
      }
     }
    }
   }).start();
  }
 }
}


别再纠结线程池大小/线程数量了,没有固定公式的

哇,唯一有利用率的9号核心,利用率也才50%,和前面没有sleep的100%相比,已经低了一半了。现在把线程数调整到12个看看:



别再纠结线程池大小/线程数量了,没有固定公式的

单个核心的利用率60左右,和刚才的单线程结果差距不大,还没有把CPU利用率跑满,现在将线程数增加到18:



别再纠结线程池大小/线程数量了,没有固定公式的

此时单核心利用率,已经接近100%了。由此可见,当线程中有 I/O 等操作不占用CPU资源时,操作系统可以调度CPU可以同时执行更多的线程。


现在将I/O事件的频率调高看看呢,把循环次数减到一半,50_000_000,同样是18个线程:



别再纠结线程池大小/线程数量了,没有固定公式的

此时每个核心的利用率,大概只有70%左右了。


线程数和CPU利用率的小总结


上面的例子,只是辅助,为了更好的理解线程数/程序行为/CPU状态的关系,来简单总结一下:





  • 一个极端的线程(不停执行“计算”型操作时),就可以把单个核心的利用率跑满,多核心CPU最多只能同时执行等于核心数的“极端”线程数



  • 如果每个线程都这么“极端”,且同时执行的线程数超过核心数,会导致不必要的切换,造成负载过高,只会让执行更慢



  • I/O 等暂停类操作时,CPU处于空闲状态,操作系统调度CPU执行其他线程,可以提高CPU利用率,同时执行更多的线程



  • I/O 事件的频率频率越高,或者等待/暂停时间越长,CPU的空闲时间也就更长,利用率越低,操作系统可以调度CPU执行更多的线程


线程数规划的公式


前面的铺垫,都是为了帮助理解,现在来看看书本上的定义。《Java 并发编程实战》介绍了一个线程数计算的公式:


别再纠结线程池大小/线程数量了,没有固定公式的如果希望程序跑到 CPU 的目标利用率,需要的线程数公式为:



别再纠结线程池大小/线程数量了,没有固定公式的

公式很清晰,现在来带入上面的例子试试看:


如果我期望目标利用率为90%(多核90),那么需要的线程数为:


核心数12 * 利用率0.9 * (1 + 50(sleep时间)/50(循环50_000_000耗时)) ≈ 22


现在把线程数调到22,看看结果:



别再纠结线程池大小/线程数量了,没有固定公式的

现在CPU利用率大概80+,和预期比较接近了,由于线程数过多,还有些上下文切换的开销,再加上测试用例不够严谨,所以实际利用率低一些也正常。


把公式变个形,还可以通过线程数来计算CPU利用率:




线程数22 / (核心数12 * (1 + 50(sleep时间)/50(循环50_000_000耗时))) ≈ 0.9


虽然公式很好,但在真实的程序中,一般很难获得准确的等待时间和计算时间,因为程序很复杂,不只是“计算”。一段代码中会有很多的内存读写,计算,I/O 等复合操作,精确的获取这两个指标很难,所以光靠公式计算线程数过于理想化。


真实程序中的线程数


那么在实际的程序中,或者说一些Java的业务系统中,线程数(线程池大小)规划多少合适呢?


先说结论:没有固定答案,先设定预期,比如我期望的CPU利用率在多少,负载在多少,GC频率多少之类的指标后,再通过测试不断的调整到一个合理的线程数


比如一个普通的,SpringBoot 为基础的业务系统,默认Tomcat容器+HikariCP连接池+G1回收器,如果此时项目中也需要一个业务场景的多线程(或者线程池)来异步/并行执行业务流程。


此时我按照上面的公式来规划线程数的话,误差一定会很大。因为此时这台主机上,已经有很多运行中的线程了,Tomcat有自己的线程池,HikariCP也有自己的后台线程,JVM也有一些编译的线程,连G1都有自己的后台线程。这些线程也是运行在当前进程、当前主机上的,也会占用CPU的资源。


所以受环境干扰下,单靠公式很难准确的规划线程数,一定要通过测试来验证。


流程一般是这样:





  1. 分析当前主机上,有没有其他进程干扰



  2. 分析当前JVM进程上,有没有其他运行中或可能运行的线程



  3. 设定目标




    • 目标CPU利用率 - 我最高能容忍我的CPU飙到多少?



    • 目标GC频率/暂停时间 - 多线程执行后,GC频率会增高,最大能容忍到什么频率,每次暂停时间多少?



    • 执行效率 - 比如批处理时,我单位时间内要开多少线程才能及时处理完毕



    • ……




  4. 梳理链路关键点,是否有卡脖子的点,因为如果线程数过多,链路上某些节点资源有限可能会导致大量的线程在等待资源(比如三方接口限流,连接池数量有限,中间件压力过大无法支撑等)



  5. 不断的增加/减少线程数来测试,按最高的要求去测试,最终获得一个“满足要求”的线程数**


而且而且而且!不同场景下的线程数理念也有所不同:





  • Tomcat中的maxThreads,在Blocking I/O和No-Blocking I/O下就不一样



  • Dubbo 默认还是单连接呢,也有I/O线程(池)和业务线程(池)的区分,I/O线程一般不是瓶颈,所以不必太多,但业务线程很容易称为瓶颈



  • Redis 6.0以后也是多线程了,不过它只是I/O 多线程,“业务”处理还是单线程


所以,不要纠结设置多少线程了。没有标准答案,一定要结合场景,带着目标,通过测试去找到一个最合适的线程数。


可能还有同学可能会有疑问:“我们系统也没啥压力,不需要那么合适的线程数,只是一个简单的异步场景,不影响系统其他功能就可以”


很正常,很多的内部业务系统,并不需要啥性能,稳定好用符合需求就可以了。那么我的推荐的线程数是:CPU核心数


附录


Java 获取CPU核心数


Runtime.getRuntime().availableProcessors()//获取逻辑核心数,如6核心12线程,那么返回的是12

Linux 获取CPU核心数


# 总核数 = 物理CPU个数 X 每颗物理CPU的核数 
# 总逻辑CPU数 = 物理CPU个数 X 每颗物理CPU的核数 X 超线程数
# 查看物理CPU个数
cat /proc/cpuinfo| grep "physical id"| sort| uniq| wc -l
# 查看每个物理CPU中core的个数(即核数)
cat /proc/cpuinfo| grep "cpu cores"| uniq
# 查看逻辑CPU的个数
cat /proc/cpuinfo| grep "processor"| wc -l

推荐好文


推荐阅读
  • Java容器中的compareto方法排序原理解析
    本文从源码解析Java容器中的compareto方法的排序原理,讲解了在使用数组存储数据时的限制以及存储效率的问题。同时提到了Redis的五大数据结构和list、set等知识点,回忆了作者大学时代的Java学习经历。文章以作者做的思维导图作为目录,展示了整个讲解过程。 ... [详细]
  • Spring特性实现接口多类的动态调用详解
    本文详细介绍了如何使用Spring特性实现接口多类的动态调用。通过对Spring IoC容器的基础类BeanFactory和ApplicationContext的介绍,以及getBeansOfType方法的应用,解决了在实际工作中遇到的接口及多个实现类的问题。同时,文章还提到了SPI使用的不便之处,并介绍了借助ApplicationContext实现需求的方法。阅读本文,你将了解到Spring特性的实现原理和实际应用方式。 ... [详细]
  • Spring常用注解(绝对经典),全靠这份Java知识点PDF大全
    本文介绍了Spring常用注解和注入bean的注解,包括@Bean、@Autowired、@Inject等,同时提供了一个Java知识点PDF大全的资源链接。其中详细介绍了ColorFactoryBean的使用,以及@Autowired和@Inject的区别和用法。此外,还提到了@Required属性的配置和使用。 ... [详细]
  • 本文整理了Java中java.lang.NoSuchMethodError.getMessage()方法的一些代码示例,展示了NoSuchMethodErr ... [详细]
  • Iamtryingtomakeaclassthatwillreadatextfileofnamesintoanarray,thenreturnthatarra ... [详细]
  • 个人学习使用:谨慎参考1Client类importcom.thoughtworks.gauge.Step;importcom.thoughtworks.gauge.T ... [详细]
  • springmvc学习笔记(十):控制器业务方法中通过注解实现封装Javabean接收表单提交的数据
    本文介绍了在springmvc学习笔记系列的第十篇中,控制器的业务方法中如何通过注解实现封装Javabean来接收表单提交的数据。同时还讨论了当有多个注册表单且字段完全相同时,如何将其交给同一个控制器处理。 ... [详细]
  • 标题: ... [详细]
  • 集合的遍历方式及其局限性
    本文介绍了Java中集合的遍历方式,重点介绍了for-each语句的用法和优势。同时指出了for-each语句无法引用数组或集合的索引的局限性。通过示例代码展示了for-each语句的使用方法,并提供了改写为for语句版本的方法。 ... [详细]
  • Java SE从入门到放弃(三)的逻辑运算符详解
    本文详细介绍了Java SE中的逻辑运算符,包括逻辑运算符的操作和运算结果,以及与运算符的不同之处。通过代码演示,展示了逻辑运算符的使用方法和注意事项。文章以Java SE从入门到放弃(三)为背景,对逻辑运算符进行了深入的解析。 ... [详细]
  • 一次上线事故,30岁+的程序员踩坑经验之谈
    本文主要介绍了一位30岁+的程序员在一次上线事故中踩坑的经验之谈。文章提到了在双十一活动期间,作为一个在线医疗项目,他们进行了优惠折扣活动的升级改造。然而,在上线前的最后一天,由于大量数据请求,导致部分接口出现问题。作者通过部署两台opentsdb来解决问题,但读数据的opentsdb仍然经常假死。作者只能查询最近24小时的数据。这次事故给他带来了很多教训和经验。 ... [详细]
  • 2021最新总结网易/腾讯/CVTE/字节面经分享(附答案解析)
    本文分享作者在2021年面试网易、腾讯、CVTE和字节等大型互联网企业的经历和问题,包括稳定性设计、数据库优化、分布式锁的设计等内容。同时提供了大厂最新面试真题笔记,并附带答案解析。 ... [详细]
  • [大整数乘法] java代码实现
    本文介绍了使用java代码实现大整数乘法的过程,同时也涉及到大整数加法和大整数减法的计算方法。通过分治算法来提高计算效率,并对算法的时间复杂度进行了研究。详细代码实现请参考文章链接。 ... [详细]
  • Android源码深入理解JNI技术的概述和应用
    本文介绍了Android源码中的JNI技术,包括概述和应用。JNI是Java Native Interface的缩写,是一种技术,可以实现Java程序调用Native语言写的函数,以及Native程序调用Java层的函数。在Android平台上,JNI充当了连接Java世界和Native世界的桥梁。本文通过分析Android源码中的相关文件和位置,深入探讨了JNI技术在Android开发中的重要性和应用场景。 ... [详细]
  • JVM:33 如何查看JVM的Full GC日志
    1.示例代码packagecom.webcode;publicclassDemo4{publicstaticvoidmain(String[]args){byte[]arr ... [详细]
author-avatar
小麻雀yuuri
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有