热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

开发笔记:百度飞桨学习——七日打卡作业五人识别

篇首语:本文由编程笔记#小编为大家整理,主要介绍了百度飞桨学习——七日打卡作业五人识别相关的知识,希望对你有一定的参考价值。百度

篇首语:本文由编程笔记#小编为大家整理,主要介绍了百度飞桨学习——七日打卡作业五人识别相关的知识,希望对你有一定的参考价值。




百度飞桨学习——七日打卡作业(四)五人识别


任务简介

图像分类是计算机视觉的重要领域,它的目标是将图像分类到预定义的标签。近期,许多研究者提出很多不同种类的神经网络,并且极大的提升了分类算法的性能。本文以自己创建的数据集:青春有你2中选手识别为例子,介绍如何使用PaddleHub进行图像分类任务。这次的作业难度开始上升,目标是识别5个人的照片



环境搭建

这里使用的是飞桨的在线环境 https://aistudio.baidu.com/,我这里用的GPU

#CPU环境启动请务必执行该指令
#%set_env CPU_NUM=1
#安装paddlehub
!pip install paddlehub==1.6.0 -i https://pypi.tuna.tsinghua.edu.cn/simple


加载模型

由于是图像分类任务,因此我们使用经典的ResNet-50作为预训练模型。PaddleHub提供了丰富的图像分类预训练模型,包括了最新的神经网络架构搜索类的PNASNet,我们推荐您尝试不同的预训练模型来获得更好的性能。

这个模型的模型说明: https://www.paddlepaddle.org.cn/modelbasedetail/resnet

import paddlehub as hub
module = hub.Module(name="resnet_v2_50_imagenet")


数据准备

我们使用自定义的数据进行体验

数据集的规则:PaddleHub适配自定义数据完成finetune

from paddlehub.dataset.base_cv_dataset import BaseCVDataset

class DemoDataset(BaseCVDataset):
def __init__(self):
# 数据集存放位置

self.dataset_dir = "dataset"
super(DemoDataset, self).__init__(
base_path=self.dataset_dir,
train_list_file="train_list.txt",
validate_list_file="validate_list.txt",
test_list_file="test_list.txt",
label_list_file="label_list.txt",
)
dataset = DemoDataset()


生成数据读取器

接着生成一个图像分类的reader,reader负责将dataset的数据进行预处理,接着以特定格式组织并输入给模型进行训练。

当我们生成一个图像分类的reader时,需要指定输入图片的大小

data_reader = hub.reader.ImageClassificationReader(
image_width=module.get_expected_image_width(),
image_height=module.get_expected_image_height(),
images_mean=module.get_pretrained_images_mean(),
images_std=module.get_pretrained_images_std(),
dataset=dataset)


配置策略

在进行Finetune前,我们可以设置一些运行时的配置,例如如下代码中的配置,表示:



  • use_cuda:设置为False表示使用CPU进行训练。如果您本机支持GPU,且安装的是GPU版本的PaddlePaddle,我们建议您将这个选项设置为True;


  • epoch:迭代轮数;


  • batch_size:每次训练的时候,给模型输入的每批数据大小为32,模型训练时能够并行处理批数据,因此batch_size越大,训练的效率越高,但是同时带来了内存的负荷,过大的batch_size可能导致内存不足而无法训练,因此选择一个合适的batch_size是很重要的一步;


  • log_interval:每隔10 step打印一次训练日志;


  • eval_interval:每隔50 step在验证集上进行一次性能评估;


  • checkpoint_dir:将训练的参数和数据保存到cv_finetune_turtorial_demo目录中;


  • strategy:使用DefaultFinetuneStrategy策略进行finetune;

更多运行配置,请查看RunConfig

同时PaddleHub提供了许多优化策略,如AdamWeightDecayStrategyULMFiTStrategyDefaultFinetuneStrategy等,详细信息参见策略

config = hub.RunConfig(
use_cuda=True, #是否使用GPU训练,默认为False;
num_epoch=5, #Fine-tune的轮数;
checkpoint_dir="cv_finetune_turtorial_demo",#模型checkpoint保存路径, 若用户没有指定,程序会自动生成;
batch_size=5, #训练的批大小,如果使用GPU,请根据实际情况调整batch_size;
eval_interval=10, #模型评估的间隔,默认每100个step评估一次验证集;
strategy=hub.finetune.strategy.DefaultFinetuneStrategy()) #Fine-tune优化策略;


组建Finetune Task

有了合适的预训练模型和准备要迁移的数据集后,我们开始组建一个Task。

由于该数据设置是一个二分类的任务,而我们下载的分类module是在ImageNet数据集上训练的千分类模型,所以我们需要对模型进行简单的微调,把模型改造为一个五分类模型:

获取module的上下文环境,包括输入和输出的变量,以及Paddle Program;

从输出变量中找到特征图提取层feature_map;

在feature_map后面接入一个全连接层,生成Task;

input_dict, output_dict, program = module.context(trainable=True)
img = input_dict["image"]
feature_map = output_dict["feature_map"]
feed_list = [img.name]
task = hub.ImageClassifierTask(
data_reader=data_reader,
feed_list=feed_list,
feature=feature_map,
num_classes=dataset.num_labels,
config=config)


开始Finetune

我们选择finetune_and_eval接口来进行模型训练,这个接口在finetune的过程中,会周期性的进行模型效果的评估,以便我们了解整个训练过程的性能变化。

run_states = task.finetune_and_eval()


预测

当Finetune完成后,我们使用模型来进行预测,先通过以下命令来获取测试的图片

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
with open("dataset/test_list.txt","r") as f:
filepath = f.readlines()
data = [filepath[0].split(" ")[0],filepath[1].split(" ")[0],filepath[2].split(" ")[0],filepath[3].split(" ")[0],filepath[4].split(" ")[0]]
label_map = dataset.label_dict()
index = 0
run_states = task.predict(data=data)
results = [run_state.run_results for run_state in run_states]
for batch_result in results:
print(batch_result)
batch_result = np.argmax(batch_result, axis=2)[0]
print(batch_result)
for result in batch_result:
index += 1
result = label_map[result]
print("input %i is %s, and the predict result is %s" %
(index, data[index - 1], result))


输出结果

[2020-04-26 19:57:14,983] [ INFO] - PaddleHub predict start
[2020-04-26 19:57:14,984] [ INFO] - The best model has been loaded
share_vars_from is set, scope is ignored.
[2020-04-26 19:57:15,301] [ INFO] - PaddleHub predict finished.
[array([[9.48078156e-01, 7.49536611e-09, 2.55834404e-02, 2.63373181e-02,
1.05431093e-06],
[2.98482919e-04, 9.49996829e-01, 2.62831600e-04, 1.30926250e-02,
3.63491662e-02],
[6.39940496e-04, 3.37380150e-08, 9.98618841e-01, 7.22580648e-04,
1.86218040e-05],
[1.47535587e-07, 1.22062795e-08, 6.63531637e-06, 9.99992490e-01,
7.06393450e-07],
[8.04419324e-06, 2.05739434e-06, 1.02607771e-06, 6.20427090e-05,
9.99926805e-01]], dtype=float32)]
[0 1 2 3 4]
input 1 is dataset/test1/yushuxin.jpg, and the predict result is 虞书欣
input 2 is dataset/test1/xujiaqi.jpg, and the predict result is 许佳琪
input 3 is dataset/test1/zhaoxiaotang.jpg, and the predict result is 赵小棠
input 4 is dataset/test1/anqi.jpg, and the predict result is 安崎
input 5 is dataset/test1/wangchengxuan.jpg, and the predict result is 王承渲

由此我们可以得到的答案与照片的实际(即人名)是一一对应的。模型预测成功


推荐阅读
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • 深入解析Android自定义View面试题
    本文探讨了Android Launcher开发中自定义View的重要性,并通过一道经典的面试题,帮助开发者更好地理解自定义View的实现细节。文章不仅涵盖了基础知识,还提供了实际操作建议。 ... [详细]
  • 本文档旨在帮助开发者回顾游戏开发中的人工智能技术,涵盖移动算法、群聚行为、路径规划、脚本AI、有限状态机、模糊逻辑、规则式AI、概率论与贝叶斯技术、神经网络及遗传算法等内容。 ... [详细]
  • 利用Java与Tesseract-OCR实现数字识别
    本文深入探讨了如何利用Java语言结合Tesseract-OCR技术来实现图像中的数字识别功能,旨在为开发者提供详细的指导和实践案例。 ... [详细]
  • 非公版RTX 3080显卡的革新与亮点
    本文深入探讨了图形显卡的进化历程,重点介绍了非公版RTX 3080显卡的技术特点和创新设计。 ... [详细]
  • 资源推荐 | TensorFlow官方中文教程助力英语非母语者学习
    来源:机器之心。本文详细介绍了TensorFlow官方提供的中文版教程和指南,帮助开发者更好地理解和应用这一强大的开源机器学习平台。 ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • Android 渐变圆环加载控件实现
    本文介绍了如何在 Android 中创建一个自定义的渐变圆环加载控件,该控件已在多个知名应用中使用。我们将详细探讨其工作原理和实现方法。 ... [详细]
  • 本章将深入探讨移动 UI 设计的核心原则,帮助开发者构建简洁、高效且用户友好的界面。通过学习设计规则和用户体验优化技巧,您将能够创建出既美观又实用的移动应用。 ... [详细]
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • 尽管深度学习带来了广泛的应用前景,其训练通常需要强大的计算资源。然而,并非所有开发者都能负担得起高性能服务器或专用硬件。本文探讨了如何在有限的硬件条件下(如ARM CPU)高效运行深度神经网络,特别是通过选择合适的工具和框架来加速模型推理。 ... [详细]
  • 2017年人工智能领域的十大里程碑事件回顾
    随着2018年的临近,我们一同回顾过去一年中人工智能领域的重要进展。这一年,无论是政策层面的支持,还是技术上的突破,都显示了人工智能发展的迅猛势头。以下是精选的2017年人工智能领域最具影响力的事件。 ... [详细]
  • 基于2-channelnetwork的图片相似度判别一、相关理论本篇博文主要讲解2015年CVPR的一篇关于图像相似度计算的文章:《LearningtoCompar ... [详细]
  • 在上一篇文章中,我们初步探讨了神经网络的基础概念,并通过一个简单的例子——将摄氏度转换为华氏度——介绍了单个神经元的工作原理。本文将继续探索神经网络的应用,特别是如何构建一个基本的分类器。 ... [详细]
  • 在Ubuntu 16.04中使用Anaconda安装TensorFlow
    本文详细介绍了如何在Ubuntu 16.04系统上通过Anaconda环境管理工具安装TensorFlow。首先,需要下载并安装Anaconda,然后配置环境变量以确保系统能够识别Anaconda命令。接着,创建一个特定的Python环境用于安装TensorFlow,并通过指定的镜像源加速安装过程。最后,通过一个简单的线性回归示例验证TensorFlow的安装是否成功。 ... [详细]
author-avatar
花琦1979
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有