热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

开发笔记:百度飞桨学习——七日打卡作业五人识别

篇首语:本文由编程笔记#小编为大家整理,主要介绍了百度飞桨学习——七日打卡作业五人识别相关的知识,希望对你有一定的参考价值。百度

篇首语:本文由编程笔记#小编为大家整理,主要介绍了百度飞桨学习——七日打卡作业五人识别相关的知识,希望对你有一定的参考价值。




百度飞桨学习——七日打卡作业(四)五人识别


任务简介

图像分类是计算机视觉的重要领域,它的目标是将图像分类到预定义的标签。近期,许多研究者提出很多不同种类的神经网络,并且极大的提升了分类算法的性能。本文以自己创建的数据集:青春有你2中选手识别为例子,介绍如何使用PaddleHub进行图像分类任务。这次的作业难度开始上升,目标是识别5个人的照片



环境搭建

这里使用的是飞桨的在线环境 https://aistudio.baidu.com/,我这里用的GPU

#CPU环境启动请务必执行该指令
#%set_env CPU_NUM=1
#安装paddlehub
!pip install paddlehub==1.6.0 -i https://pypi.tuna.tsinghua.edu.cn/simple


加载模型

由于是图像分类任务,因此我们使用经典的ResNet-50作为预训练模型。PaddleHub提供了丰富的图像分类预训练模型,包括了最新的神经网络架构搜索类的PNASNet,我们推荐您尝试不同的预训练模型来获得更好的性能。

这个模型的模型说明: https://www.paddlepaddle.org.cn/modelbasedetail/resnet

import paddlehub as hub
module = hub.Module(name="resnet_v2_50_imagenet")


数据准备

我们使用自定义的数据进行体验

数据集的规则:PaddleHub适配自定义数据完成finetune

from paddlehub.dataset.base_cv_dataset import BaseCVDataset

class DemoDataset(BaseCVDataset):
def __init__(self):
# 数据集存放位置

self.dataset_dir = "dataset"
super(DemoDataset, self).__init__(
base_path=self.dataset_dir,
train_list_file="train_list.txt",
validate_list_file="validate_list.txt",
test_list_file="test_list.txt",
label_list_file="label_list.txt",
)
dataset = DemoDataset()


生成数据读取器

接着生成一个图像分类的reader,reader负责将dataset的数据进行预处理,接着以特定格式组织并输入给模型进行训练。

当我们生成一个图像分类的reader时,需要指定输入图片的大小

data_reader = hub.reader.ImageClassificationReader(
image_width=module.get_expected_image_width(),
image_height=module.get_expected_image_height(),
images_mean=module.get_pretrained_images_mean(),
images_std=module.get_pretrained_images_std(),
dataset=dataset)


配置策略

在进行Finetune前,我们可以设置一些运行时的配置,例如如下代码中的配置,表示:



  • use_cuda:设置为False表示使用CPU进行训练。如果您本机支持GPU,且安装的是GPU版本的PaddlePaddle,我们建议您将这个选项设置为True;


  • epoch:迭代轮数;


  • batch_size:每次训练的时候,给模型输入的每批数据大小为32,模型训练时能够并行处理批数据,因此batch_size越大,训练的效率越高,但是同时带来了内存的负荷,过大的batch_size可能导致内存不足而无法训练,因此选择一个合适的batch_size是很重要的一步;


  • log_interval:每隔10 step打印一次训练日志;


  • eval_interval:每隔50 step在验证集上进行一次性能评估;


  • checkpoint_dir:将训练的参数和数据保存到cv_finetune_turtorial_demo目录中;


  • strategy:使用DefaultFinetuneStrategy策略进行finetune;

更多运行配置,请查看RunConfig

同时PaddleHub提供了许多优化策略,如AdamWeightDecayStrategyULMFiTStrategyDefaultFinetuneStrategy等,详细信息参见策略

config = hub.RunConfig(
use_cuda=True, #是否使用GPU训练,默认为False;
num_epoch=5, #Fine-tune的轮数;
checkpoint_dir="cv_finetune_turtorial_demo",#模型checkpoint保存路径, 若用户没有指定,程序会自动生成;
batch_size=5, #训练的批大小,如果使用GPU,请根据实际情况调整batch_size;
eval_interval=10, #模型评估的间隔,默认每100个step评估一次验证集;
strategy=hub.finetune.strategy.DefaultFinetuneStrategy()) #Fine-tune优化策略;


组建Finetune Task

有了合适的预训练模型和准备要迁移的数据集后,我们开始组建一个Task。

由于该数据设置是一个二分类的任务,而我们下载的分类module是在ImageNet数据集上训练的千分类模型,所以我们需要对模型进行简单的微调,把模型改造为一个五分类模型:

获取module的上下文环境,包括输入和输出的变量,以及Paddle Program;

从输出变量中找到特征图提取层feature_map;

在feature_map后面接入一个全连接层,生成Task;

input_dict, output_dict, program = module.context(trainable=True)
img = input_dict["image"]
feature_map = output_dict["feature_map"]
feed_list = [img.name]
task = hub.ImageClassifierTask(
data_reader=data_reader,
feed_list=feed_list,
feature=feature_map,
num_classes=dataset.num_labels,
config=config)


开始Finetune

我们选择finetune_and_eval接口来进行模型训练,这个接口在finetune的过程中,会周期性的进行模型效果的评估,以便我们了解整个训练过程的性能变化。

run_states = task.finetune_and_eval()


预测

当Finetune完成后,我们使用模型来进行预测,先通过以下命令来获取测试的图片

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
with open("dataset/test_list.txt","r") as f:
filepath = f.readlines()
data = [filepath[0].split(" ")[0],filepath[1].split(" ")[0],filepath[2].split(" ")[0],filepath[3].split(" ")[0],filepath[4].split(" ")[0]]
label_map = dataset.label_dict()
index = 0
run_states = task.predict(data=data)
results = [run_state.run_results for run_state in run_states]
for batch_result in results:
print(batch_result)
batch_result = np.argmax(batch_result, axis=2)[0]
print(batch_result)
for result in batch_result:
index += 1
result = label_map[result]
print("input %i is %s, and the predict result is %s" %
(index, data[index - 1], result))


输出结果

[2020-04-26 19:57:14,983] [ INFO] - PaddleHub predict start
[2020-04-26 19:57:14,984] [ INFO] - The best model has been loaded
share_vars_from is set, scope is ignored.
[2020-04-26 19:57:15,301] [ INFO] - PaddleHub predict finished.
[array([[9.48078156e-01, 7.49536611e-09, 2.55834404e-02, 2.63373181e-02,
1.05431093e-06],
[2.98482919e-04, 9.49996829e-01, 2.62831600e-04, 1.30926250e-02,
3.63491662e-02],
[6.39940496e-04, 3.37380150e-08, 9.98618841e-01, 7.22580648e-04,
1.86218040e-05],
[1.47535587e-07, 1.22062795e-08, 6.63531637e-06, 9.99992490e-01,
7.06393450e-07],
[8.04419324e-06, 2.05739434e-06, 1.02607771e-06, 6.20427090e-05,
9.99926805e-01]], dtype=float32)]
[0 1 2 3 4]
input 1 is dataset/test1/yushuxin.jpg, and the predict result is 虞书欣
input 2 is dataset/test1/xujiaqi.jpg, and the predict result is 许佳琪
input 3 is dataset/test1/zhaoxiaotang.jpg, and the predict result is 赵小棠
input 4 is dataset/test1/anqi.jpg, and the predict result is 安崎
input 5 is dataset/test1/wangchengxuan.jpg, and the predict result is 王承渲

由此我们可以得到的答案与照片的实际(即人名)是一一对应的。模型预测成功


推荐阅读
  • 本文将详细介绍如何配置并整合MVP架构、Retrofit网络请求库、Dagger2依赖注入框架以及RxAndroid响应式编程库,构建高效、模块化的Android应用。 ... [详细]
  • 本文详细介绍了如何在本地环境中安装配置Frida及其服务器组件,以及如何通过Frida进行基本的应用程序动态分析,包括获取应用版本和加载的类信息。 ... [详细]
  • LeetCode 实战:寻找三数之和为零的组合
    给定一个包含 n 个整数的数组,判断该数组中是否存在三个元素 a、b、c,使得 a + b + c = 0。找出所有满足条件且不重复的三元组。 ... [详细]
  • 本文探讨了 Boost 库中的 Program Options 组件,这是一个强大的工具,用于解析命令行参数和配置文件。文章介绍了如何正确设置和使用该组件,包括处理复杂选项和负数值的方法。 ... [详细]
  • 使用Pandas DataFrame探索十大城市房价与薪资对比
    在本篇文章中,我们将通过Pandas库中的DataFrame工具,深入了解中国十大城市的房价与薪资水平,探讨哪些城市的生活成本更为合理。这是学习Python数据分析系列的第82篇原创文章,预计阅读时间约为6分钟。 ... [详细]
  • 本文介绍了进程的基本概念及其在操作系统中的重要性,探讨了进程与程序的区别,以及如何通过多进程实现并发和并行。文章还详细讲解了Python中的multiprocessing模块,包括Process类的使用方法、进程间的同步与异步调用、阻塞与非阻塞操作,并通过实例演示了进程池的应用。 ... [详细]
  • 本文详细介绍了如何在 EasyUI 框架中实现 DataGrid 组件的分页功能,包括配置方法和常见问题的解决方案。 ... [详细]
  • Python脚本实现批量删除多种类型文件的扩展名
    本文介绍了一个Python脚本,用于批量处理并移除指定目录下不同格式文件(如png、jpg、xml、json、txt、gt等)的文件扩展名。该方法通过递归遍历文件夹中的所有文件,并对每个文件执行重命名操作。 ... [详细]
  • 基于51单片机的多项目设计实现与优化
    本文探讨了基于51单片机的多个项目的设计与实现,包括PID控制算法的开关电源设计、八音电子琴仿真设计、智能抽奖系统控制设计及停车场车位管理系统设计。每个项目均采用先进的控制技术和算法,旨在提升系统的效率、稳定性和用户体验。 ... [详细]
  • 本文详细介绍了Python中的生成器表达式、列表推导式、字典推导式及集合推导式等,探讨了它们之间的差异,并提供了丰富的代码示例。 ... [详细]
  • 本文介绍了基于Java的在线办公工作流系统的毕业设计方案,涵盖了MyBatis框架的应用、源代码分析、调试与部署流程、数据库设计以及相关论文撰写指导。 ... [详细]
  • 使用R语言进行Foodmart数据的关联规则分析与可视化
    本文探讨了如何利用R语言中的arules和arulesViz包对Foodmart数据集进行关联规则的挖掘与可视化。文章首先介绍了数据集的基本情况,然后逐步展示了如何进行数据预处理、规则挖掘及结果的图形化呈现。 ... [详细]
  • 计算机学报精选论文概览(2020-2022)
    本文汇总了2020年至2022年间《计算机学报》上发表的若干重要论文,旨在为即将投稿的研究者提供参考。 ... [详细]
  • 目录预备知识导包构建数据集神经网络结构训练测试精度可视化计算模型精度损失可视化输出网络结构信息训练神经网络定义参数载入数据载入神经网络结构、损失及优化训练及测试损失、精度可视化qu ... [详细]
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
author-avatar
花琦1979
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有