热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

深入理解Redis的数据结构与对象系统

本文详细探讨了Redis中的数据结构和对象系统的实现,包括字符串、列表、集合、哈希表和有序集合等五种核心对象类型,以及它们所使用的底层数据结构。通过分析源码和相关文献,帮助读者更好地理解Redis的设计原理。

引言:本文旨在深入探讨Redis的数据结构及其对象系统的实现机制,帮助读者全面理解Redis的工作原理和优化方法。


本文基于Redis 3.0源码和《Redis设计与实现》一书进行分析,涵盖了Redis中五种主要对象类型(String、List、Set、Hash、Sorted Set)及其底层数据结构的详细解析。


对象系统

Redis的对象系统由redisObject结构表示,该结构包含三个与保存数据相关的属性:typeencodingptr。每种对象类型都对应至少一种底层数据结构,以确保高效存储和访问。

/* Object types */
#define REDIS_STRING 0
#define REDIS_LIST 1
#define REDIS_SET 2
#define REDIS_ZSET 3
#define REDIS_HASH 4
/* Objects encoding. Some kinds of objects like Strings and Hashes can be internally represented in multiple ways. The 'encoding' field of the object is set to one of these fields for this object. */
#define REDIS_ENCODING_RAW 0 /* Raw representation */
#define REDIS_ENCODING_INT 1 /* Encoded as integer */
#define REDIS_ENCODING_HT 2 /* Encoded as hash table */
#define REDIS_ENCODING_ZIPMAP 3 /* Encoded as zipmap */
#define REDIS_ENCODING_LINKEDLIST 4 /* Encoded as regular linked list */
#define REDIS_ENCODING_ZIPLIST 5 /* Encoded as ziplist */
#define REDIS_ENCODING_INTSET 6 /* Encoded as intset */
#define REDIS_ENCODING_SKIPLIST 7 /* Encoded as skiplist */
#define REDIS_ENCODING_EMBSTR 8 /* Embedded sds string encoding */
typedef struct redisObject {
unsigned type:4;
unsigned encoding:4;
unsigned lru:REDIS_LRU_BITS; /* lru time (relative to server.lruclock) */
int refcount;
void *ptr;
} robj;


底层数据结构

SDS - Simple Dynamic String

SDS是二进制安全的动态字符串,具有高效的内存管理和字符串操作功能。


定义

typedef char *sds;
struct sdshdr {
unsigned int len;
unsigned int free;
char buf[];
};


API

/* Append the specified binary-safe string pointed by 't' of 'len' bytes to the end of the specified sds string 's'.
* After the call, the passed sds string is no longer valid and all the references must be substituted with the new pointer returned by the call. */
sds sdscatlen(sds s, const void *t, size_t len) {
struct sdshdr *sh;
size_t curlen = sdslen(s);
s = sdsMakeRoomFor(s,len);
if (s == NULL) return NULL;
sh = (void*) (s-(sizeof(struct sdshdr)));
memcpy(s+curlen, t, len);
sh->len = curlen+len;
sh->free = sh->free-len;
s[curlen+len] = '\0';
return s;
}
/* Append the specified null terminated C string to the sds string 's'.
* After the call, the passed sds string is no longer valid and all the references must be substituted with the new pointer returned by the call. */
sds sdscat(sds s, const char *t) {
return sdscatlen(s, t, strlen(t));
}


链表(Linked List)

链表是一种常见的线性数据结构,Redis中的链表实现支持双向遍历和节点插入删除操作。

/* Node, List, and Iterator are the only data structures used currently. */
typedef struct listNode {
struct listNode *prev;
struct listNode *next;
void *value;
} listNode;
typedef struct listIter {
listNode *next;
int direction;
} listIter;
typedef struct list {
listNode *head;
listNode *tail;
void *(*dup)(void *ptr);
void (*free)(void *ptr);
int (*match)(void *ptr, void *key);
unsigned long len;
} list;


哈希表(Hash Table)

Redis的哈希表实现了分离链接法(Separate Chaining),并根据负载因子自动调整大小,以保持高效的查找性能。


定义

typedef struct dictEntry {
void *key;
union {
void *val;
uint64_t u64;
int64_t s64;
double d;
} v;
struct dictEntry *next;
} dictEntry;
typedef struct dictType {
unsigned int (*hashFunction)(const void *key);
void *(*keyDup)(void *privdata, const void *key);
void *(*valDup)(void *privdata, const void *obj);
int (*keyCompare)(void *privdata, const void *key1, const void *key2);
void (*keyDestructor)(void *privdata, void *key);
void (*valDestructor)(void *privdata, void *obj);
} dictType;
typedef struct dictht {
dictEntry **table;
unsigned long size;
unsigned long sizemask;
unsigned long used;
} dictht;
typedef struct dict {
dictType *type;
void *privdata;
dictht ht[2];
long rehashidx; /* rehashing not in progress if rehashidx == -1 */
int iterators; /* number of iterators currently running */
} dict;


核心方法实现

/* Add an element to the target hash table */
int dictAdd(dict *d, void *key, void *val)
{
dictEntry *entry = dictAddRaw(d,key);
if (!entry) return DICT_ERR;
dictSetVal(d, entry, val);
return DICT_OK;
}
/* Low level add. This function adds the entry but instead of setting a value returns the dictEntry structure to the user, that will make sure to fill the value field as he wishes.
* Return values:
* If key already exists NULL is returned.
* If key was added, the hash entry is returned to be manipulated by the caller. */
dictEntry *dictAddRaw(dict *d, void *key)
{
int index;
dictEntry *entry;
dictht *ht;
if (dictIsRehashing(d)) _dictRehashStep(d);
if ((index = _dictKeyIndex(d, key)) == -1)
return NULL;
ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0];
entry = zmalloc(sizeof(*entry));
entry->next = ht->table[index];
ht->table[index] = entry;
ht->used++;
dictSetKey(d, entry, key);
return entry;
}
dictEntry *dictFind(dict *d, const void *key)
{
dictEntry *he;
unsigned int h, idx, table;
if (d->ht[0].size == 0) return NULL; /* We don't have a table at all */
if (dictIsRehashing(d)) _dictRehashStep(d);
h = dictHashKey(d, key);
for (table = 0; table <= 1; table++) {
idx = h & d->ht[table].sizemask;
he = d->ht[table].table[idx];
while(he) {
if (dictCompareKeys(d, key, he->key))
return he;
he = he->next;
}
if (!dictIsRehashing(d)) return NULL;
}
return NULL;
}


跳跃表(Skip List)

跳跃表是一种有序数据结构,通过多级指针实现快速查找,平均复杂度为O(logN),最坏情况下为O(N)。

/* ZSETs use a specialized version of Skiplists */
typedef struct zskiplistNode {
robj *obj;
double score;
struct zskiplistNode *backward;
struct zskiplistLevel {
struct zskiplistNode *forward;
unsigned int span;
} level[];
} zskiplistNode;
typedef struct zskiplist {
struct zskiplistNode *header, *tail;
unsigned long length;
int level;
} zskiplist;
zskiplist *zslCreate(void);
void zslFree(zskiplist *zsl);
zskiplistNode *zslInsert(zskiplist *zsl, double score, robj *obj);
int zslDelete(zskiplist *zsl, double score, robj *obj);
zskiplistNode *zslFirstInRange(zskiplist *zsl, zrangespec *range);
zskiplistNode *zslLastInRange(zskiplist *zsl, zrangespec *range);
unsigned int zsetLength(robj *zobj);
void zsetConvert(robj *zobj, int encoding);
unsigned long zslGetRank(zskiplist *zsl, double score, robj *o);

跳跃表的核心操作包括:

  • 插入时,先找到插入位置,随机生成新节点的level,并更新相关指针和跨度。
  • 删除时,找到目标节点,更新指针和跨度,并在必要时减少跳跃表的level。

跳跃表相比平衡树实现更为简单,适合用于有序集合(ZSET)的实现。


其他底层数据结构

除了上述主要数据结构,Redis还使用了压缩列表(Ziplist)和整数集合(Intset)等辅助数据结构,以优化特定场景下的性能。


对象的实现

Redis对象的编码不是固定的,而是根据具体需求选择最优的编码方式。例如,字符串对象可以使用整数编码、嵌入式字符串编码或普通字符串编码。这种灵活性使得Redis能够在不同场景下实现最佳性能。

不同类型和编码的对象:



































































类型编码对象
REDIS_STRINGREDIS_ENCODING_INT使用整数值实现的字符串对象
REDIS_STRINGREDIS_ENCODING_EMBSTR使用 embstr 编码的简单动态字符串实现的字符串对象
REDIS_STRINGREDIS_ENCODING_RAW使用简单动态字符串实现的字符串对象
REDIS_LISTREDIS_ENCODING_ZIPLIST使用压缩列表实现的列表对象
REDIS_LISTREDIS_ENCODING_LINKEDLIST使用双端链表实现的列表对象
REDIS_HASHREDIS_ENCODING_ZIPLIST使用压缩列表实现的哈希对象
REDIS_HASHREDIS_ENCODING_HT使用字典实现的哈希对象
REDIS_SETREDIS_ENCODING_INTSET使用整数集合实现的集合对象
REDIS_SETREDIS_ENCODING_HT使用字典实现的集合对象
REDIS_ZSETREDIS_ENCODING_ZIPLIST使用压缩列表实现的有序集合对象
REDIS_ZSETREDIS_ENCODING_SKIPLIST使用跳跃表和字典实现的有序集合对象

Set

Set对象可以使用整数集合(Intset)或哈希表(Hashtable)编码。
哈希表编码的集合对象使用字典作为底层实现,字典的每个键都是字符串对象,值则全部为NULL。


Sorted Set

有序集合(Sorted Set)可以使用压缩列表(Ziplist)或跳跃表(Skiplist)编码。
typedef struct zset {
dict *dict;
zskiplist *zsl;
} zset;

当编码为跳跃表时,redisObject.ptr指向zset类型。
跳跃表本身不支持通过key查value,因此有序集合使用字典为成员维护了一个从成员到分值的映射。



推荐阅读
  • 深入解析Redis内存对象模型
    本文详细介绍了Redis内存对象模型的关键知识点,包括内存统计、内存分配、数据存储细节及优化策略。通过实际案例和专业分析,帮助读者全面理解Redis内存管理机制。 ... [详细]
  • 数据库内核开发入门 | 搭建研发环境的初步指南
    本课程将带你从零开始,逐步掌握数据库内核开发的基础知识和实践技能,重点介绍如何搭建OceanBase的开发环境。 ... [详细]
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • 2023年京东Android面试真题解析与经验分享
    本文由一位拥有6年Android开发经验的工程师撰写,详细解析了京东面试中常见的技术问题。涵盖引用传递、Handler机制、ListView优化、多线程控制及ANR处理等核心知识点。 ... [详细]
  • 从 .NET 转 Java 的自学之路:IO 流基础篇
    本文详细介绍了 Java 中的 IO 流,包括字节流和字符流的基本概念及其操作方式。探讨了如何处理不同类型的文件数据,并结合编码机制确保字符数据的正确读写。同时,文中还涵盖了装饰设计模式的应用,以及多种常见的 IO 操作实例。 ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • 本文详细介绍了Akka中的BackoffSupervisor机制,探讨其在处理持久化失败和Actor重启时的应用。通过具体示例,展示了如何配置和使用BackoffSupervisor以实现更细粒度的异常处理。 ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • MySQL索引详解与优化
    本文深入探讨了MySQL中的索引机制,包括索引的基本概念、优势与劣势、分类及其实现原理,并详细介绍了索引的使用场景和优化技巧。通过具体示例,帮助读者更好地理解和应用索引以提升数据库性能。 ... [详细]
  • 本文深入探讨了C++对象模型中的一些细节问题,特别是虚拟继承和析构函数的处理。通过具体代码示例和详细分析,揭示了书中某些观点的不足之处,并提供了更合理的解释。 ... [详细]
  • 深入解析 Apache Shiro 安全框架架构
    本文详细介绍了 Apache Shiro,一个强大且灵活的开源安全框架。Shiro 专注于简化身份验证、授权、会话管理和加密等复杂的安全操作,使开发者能够更轻松地保护应用程序。其核心目标是提供易于使用和理解的API,同时确保高度的安全性和灵活性。 ... [详细]
  • 本次考试于2016年10月25日上午7:50至11:15举行,主要涉及数学专题,特别是斐波那契数列的性质及其在编程中的应用。本文将详细解析考试中的题目,并提供解题思路和代码实现。 ... [详细]
  • HBase运维工具全解析
    本文深入探讨了HBase常用的运维工具,详细介绍了每种工具的功能、使用场景及操作示例。对于HBase的开发人员和运维工程师来说,这些工具是日常管理和故障排查的重要手段。 ... [详细]
  • 深入理解Java泛型:JDK 5的新特性
    本文详细介绍了Java泛型的概念及其在JDK 5中的应用,通过具体代码示例解释了泛型的引入、作用和优势。同时,探讨了泛型类、泛型方法和泛型接口的实现,并深入讲解了通配符的使用。 ... [详细]
  • 在 Flutter 开发过程中,开发者经常会遇到 Widget 构造函数中的可选参数 Key。对于初学者来说,理解 Key 的作用和使用场景可能是一个挑战。本文将详细探讨 Key 的概念及其应用场景,并通过实例帮助你更好地掌握这一重要工具。 ... [详细]
author-avatar
书友49457861
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有