热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

开发笔记:CodeForces813CTheTagGame(拉格朗日乘数法,限制条件求最值)

本文由编程笔记#小编为大家整理,主要介绍了CodeForces-813CTheTagGame(拉格朗日乘数法,限制条件求最值)相关的知识,希望对你有一定的参考价值。【
本文由编程笔记#小编为大家整理,主要介绍了CodeForces - 813C The Tag Game(拉格朗日乘数法,限制条件求最值)相关的知识,希望对你有一定的参考价值。


【传送门】http://codeforces.com/problemset/problem/813/C

 

【题意】给定整数a,b,c,s,求使得  xa yzc值最大的实数 x,y,z , 其中x + y + z <= s. (1?≤?S?≤?103  , 0?≤?a,?b,?c?≤?103)

 

【题解】设P(x,y,z ) = xa yzc,则P(x,y,z)是递增的,要使 函数值尽可能地大,那么必取 x + y + z = s

问题转化成:已知限定条件  x + y + z = s, 求P(x,y,z)取得最大值的(x,y,z)

显然,这是运用拉格朗日乘数法的模板题。

 

【拉格朗日乘数法】

解决的问题模型 : 已知G(x,y,z) = 0

求F(x,y,z)最值(或者极值,一般情况下拉格朗日乘数法求得的极值点就是最值点)

设L(x,y,z) = F(x,y,z) + λG(x,y,z)

将L(x,y,z)分别对x,y,z求偏导,得到3个四元一次方程,加上原来的一个限定条件G(x,y,z) = 0,共得到4个方程,解4个未知数(x,y,z,λ)

求出极值点(x, y , z)即可。

最值只可能在边界处或者极值点处取到,一般情况下极值点就是最值点

 

【回到本题】令G(x,y,z) = x + y + z - s , F(x,y,z) = alnx + blny + clnz  .用上述方法解出极值点(s*a/(a+b+c) , s*b/(a+b+c), s*c/(a+b+c))这就是所求答案。

注意a + b + c = 0的特判情况,还需要注意精度,题目要求1e-6,但是精度要达到1e-10以上才行,不然会WA,有点坑。

 

【AC代码】


#include<iostream>
#include

#include
<string>
#include

#include

#include

#include

using namespace std;
typedef
long long ll;
double s;
double a,b,c;
int main(){
while(cin>>s){
cin
>>a>>b>>c;
if(a + b + c == 0){
cout
<<1.0*s<<" "<<0<<" "<<0<<endl;
continue;
}
cout
<fixed)<18)<" "<" "<endl;
}
}

 


推荐阅读
  • PHP 过滤器详解
    本文深入探讨了 PHP 中的过滤器机制,包括常见的 $_SERVER 变量、filter_has_var() 函数、filter_id() 函数、filter_input() 函数及其数组形式、filter_list() 函数以及 filter_var() 和其数组形式。同时,详细介绍了各种过滤器的用途和用法。 ... [详细]
  • 本题探讨了在一个有向图中,如何根据特定规则将城市划分为若干个区域,使得每个区域内的城市之间能够相互到达,并且划分的区域数量最少。题目提供了时间限制和内存限制,要求在给定的城市和道路信息下,计算出最少需要划分的区域数量。 ... [详细]
  • 本文探讨了在C++中如何有效地清空输入缓冲区,确保程序只处理最近的输入并丢弃多余的输入。我们将介绍一种不阻塞的方法,并提供一个具体的实现方案。 ... [详细]
  • 对象自省自省在计算机编程领域里,是指在运行时判断一个对象的类型和能力。dir能够返回一个列表,列举了一个对象所拥有的属性和方法。my_list[ ... [详细]
  • 本问题探讨了在特定条件下排列儿童队伍的方法数量。题目要求计算满足条件的队伍排列总数,并使用递推算法和大数处理技术来解决这一问题。 ... [详细]
  • 丽江客栈选择问题
    本文介绍了一道经典的算法题,题目涉及在丽江河边的n家特色客栈中选择住宿方案。两位游客希望住在色调相同的两家客栈,并在晚上选择一家最低消费不超过p元的咖啡店小聚。我们将详细探讨如何计算满足条件的住宿方案总数。 ... [详细]
  • 本文详细介绍了 iBatis.NET 中的 Iterate 元素,它用于遍历集合并重复生成每个项目的主体内容。通过该元素,可以实现类似于 foreach 的功能,尽管 iBatis.NET 并未直接提供 foreach 标签。 ... [详细]
  • 本文详细探讨了HTML表单中GET和POST请求的区别,包括它们的工作原理、数据传输方式、安全性及适用场景。同时,通过实例展示了如何在Servlet中处理这两种请求。 ... [详细]
  • 深入解析Redis内存对象模型
    本文详细介绍了Redis内存对象模型的关键知识点,包括内存统计、内存分配、数据存储细节及优化策略。通过实际案例和专业分析,帮助读者全面理解Redis内存管理机制。 ... [详细]
  • Python处理Word文档的高效技巧
    本文详细介绍了如何使用Python处理Word文档,涵盖从基础操作到高级功能的各种技巧。我们将探讨如何生成文档、定义样式、提取表格数据以及处理超链接和图片等内容。 ... [详细]
  • 本题探讨了在大数据结构背景下,如何通过整体二分和CDQ分治等高级算法优化处理复杂的时间序列问题。题目设定包括节点数量、查询次数和权重限制,并详细分析了解决方案中的关键步骤。 ... [详细]
  • 在进行QT交叉编译时,可能会遇到与目标架构不匹配的宏定义问题。例如,当为ARM或MIPS架构编译时,需要确保使用正确的宏(如QT_ARCH_ARM或QT_ARCH_MIPS),而不是默认的QT_ARCH_I386。本文将详细介绍如何正确配置编译环境以避免此类错误。 ... [详细]
  • JSOI2010 蔬菜庆典:树结构中的无限大权值问题
    本文探讨了 JSOI2010 的蔬菜庆典问题,主要关注如何处理非根非叶子节点的无限大权值情况。通过分析根节点及其子树的特性,提出了有效的解决方案,并详细解释了算法的实现过程。 ... [详细]
  • 异常要理解Java异常处理是如何工作的,需要掌握一下三种异常类型:检查性异常:最具代表性的检查性异常是用户错误或问题引起的异常ÿ ... [详细]
  • Qt QTableView 内嵌控件的实现方法
    本文详细介绍了在 Qt QTableView 中嵌入控件的多种方法,包括使用 QItemDelegate、setIndexWidget 和 setIndexWidget 结合布局管理器。每种方法都有其适用场景和优缺点。 ... [详细]
author-avatar
文竹
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有