热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

K-Means算法原理

原理给定样本集,k-means算法得到聚类,使得下面平方误差最小其中表示聚类的中心点。实现上式最小化是一个NP难问题,实际上采用EM算法可以求得近似解。算法伪代码如下输入:,聚
原理

给定样本集,k-means算法得到聚类,使得下面平方误差最小

其中表示聚类的中心点。

实现

上式最小化是一个NP难问题,实际上采用EM算法可以求得近似解。算法伪代码如下

输入:,聚类数量k

从D中随机选择k个样本点作为k个聚类的中心
repeat
    循环所有样本点,把样本点划分到最近的聚类中:arg min||x - ui||
    更新聚类中心:ui = (∑x) / n
util 聚类中心不再变化

输出:

实例

sklearn已经实现上述算法,测试代码如下

import pandas as pd
from matplotlib import pyplot as plt
from sklearn.cluster import k_means

# 1、读取数据文件
df = pd.read_csv("data.csv", header=0)
df.head()

# 2、原始文件画图
X = df['x']
y = df['y']
plt.scatter(X, y)
plt.show()

# 3、k-means分为三类
model = k_means(df, n_clusters=3)
print(model)

# 4、分类后画图
cluster_centers = model[0]
cluster_labels = model[1]
plt.scatter(X, y, c=cluster_labels)
for center in cluster_centers:
    plt.scatter(center[0], center[1], marker="p", edgecolors="red")
plt.show()

k_means计算得到的model包含三部分

(1)各个聚类的中心

(2)样本点的类别数组

(3)所有样本点到各自聚类中心的距离平方和

运行结果如下

k值的确定

当我们不知道样本有几类时,可以采用以下两种方式确定最优k值

1、肘部法则

对于上面k_means方法返回值得第三部分,样本点到聚类中心点的距离平方和s。很明显,k = m时(m表示样本数量),s = 0,s随着k的增加而减小,s减小幅度随着k增加而减小。我们找到s变化率改变最大时对应的k值(即肘部)作为最优k值。代码如下

# 肘部法则
index = [] # 横坐标数组
inertia = [] # 纵坐标数组

# K 从 1~ 10 聚类
for i in range(9):
    model = k_means(df, n_clusters=i + 1)
    index.append(i + 1)
    inertia.append(model[2])

# 绘制折线图
plt.plot(index, inertia, "-o")
plt.show()

运行结果如下,显然k = 3是最优值

2、轮廓系数

假设我们已经通过一定算法,将待分类数据进行了聚类,得到k个簇 。对于其中的一个点 i 来说:

a(i) = i向量到它所属簇中其它点的距离平均值

b(i) = i向量到所有其他簇的点的平均距离的最小值

那么点i的轮廓系数就为:

可见轮廓系数的值是介于 [-1,1] ,越趋近于1代表内聚度和分离度都相对较优。将所有点的轮廓系数求平均,就是该聚类结果总的轮廓系数。

代码实现如下

#轮廓系数
from sklearn.metrics import silhouette_score # 导入轮廓系数计算模块

index2 = [] # 横坐标
silhouette = [] # 轮廓系数列表

# K 从 2 ~ 10 聚类
for i in range(8):
    model = k_means(df, n_clusters=i + 2)
    index2.append(i + 2)
    silhouette.append(silhouette_score(df, model[1]))

print(silhouette) # 输出不同聚类下的轮廓系数

# 绘制折线图
plt.plot(index2, silhouette, "-o")
plt.show()

实验结果如下,显然k = 3是最优值。


推荐阅读
  • 本文介绍了如何使用Python爬取妙笔阁小说网仙侠系列中所有小说的信息,并将其保存为TXT和CSV格式。主要内容包括如何构造请求头以避免被网站封禁,以及如何利用XPath解析HTML并提取所需信息。 ... [详细]
  • AI炼金术:KNN分类器的构建与应用
    本文介绍了如何使用Python及其相关库(如NumPy、scikit-learn和matplotlib)构建KNN分类器模型。通过详细的数据准备、模型训练及新样本预测的过程,展示KNN算法的实际操作步骤。 ... [详细]
  • 如何将Python与Excel高效结合:常用操作技巧解析
    本文深入探讨了如何将Python与Excel高效结合,涵盖了一系列实用的操作技巧。文章内容详尽,步骤清晰,注重细节处理,旨在帮助读者掌握Python与Excel之间的无缝对接方法,提升数据处理效率。 ... [详细]
  • 本文介绍了多维缩放(MDS)技术,这是一种将高维数据映射到低维空间的方法,通过保持原始数据间的关系,以便于可视化和分析。文章详细描述了MDS的原理和实现过程,并提供了Python代码示例。 ... [详细]
  • 自然语言处理(NLP)——LDA模型:对电商购物评论进行情感分析
    目录一、2020数学建模美赛C题简介需求评价内容提供数据二、解题思路三、LDA简介四、代码实现1.数据预处理1.1剔除无用信息1.1.1剔除掉不需要的列1.1.2找出无效评论并剔除 ... [详细]
  • 基于收支数据的聚类分析研究
    通过对收支数据进行聚类分析,研究发现聚类结果的解释和验证是关键步骤。为了确保分群的合理性和有效性,需要结合业务背景和实际需求,灵活选择合适的聚类数量。该研究利用Python中的Pandas和Matplotlib库对数据进行了预处理和可视化,为决策提供了科学依据。 ... [详细]
  • 利用 Python 中的 Altair 库实现数据抖动的水平剥离分析 ... [详细]
  • 分层学习率衰减在NLP预训练模型中的应用
    本文探讨了如何通过分层学习率衰减技术来优化NLP预训练模型的微调过程,特别是针对BERT模型。通过调整不同层的学习率,可以有效提高模型性能。 ... [详细]
  • Web动态服务器Python基本实现
    Web动态服务器Python基本实现 ... [详细]
  • 首部|接口类型_OSI 7层模型 & TCP/IP协议首部封装格式解析
    首部|接口类型_OSI 7层模型 & TCP/IP协议首部封装格式解析 ... [详细]
  • 在iOS开发中,多线程技术的应用非常广泛,能够高效地执行多个调度任务。本文将重点介绍GCD(Grand Central Dispatch)在多线程开发中的应用,包括其函数和队列的实现细节。 ... [详细]
  • 本文详细介绍了如何使用 Python 进行主成分分析(PCA),包括数据导入、预处理、模型训练和结果可视化等步骤。通过具体的代码示例,帮助读者理解和应用 PCA 技术。 ... [详细]
  • 如何高效启动大数据应用之旅?
    在前一篇文章中,我探讨了大数据的定义及其与数据挖掘的区别。本文将重点介绍如何高效启动大数据应用项目,涵盖关键步骤和最佳实践,帮助读者快速踏上大数据之旅。 ... [详细]
  • 在循环读取文本文件时,经常会遇到一些常见的错误,如日期格式不正确、文件路径错误等。本文详细分析了这些问题,并提供了具体的解决方法,包括如何正确处理日期字符串和确保文件路径的准确性。通过这些方法,可以有效提高数据读取的稳定性和可靠性。 ... [详细]
  • 可转债数据智能抓取与分析平台优化
    本项目旨在优化可转债数据的智能抓取与分析平台。通过爬取集思录上的可转债信息(排除已发布赎回的债券),并结合安道全教授提出的三条安全线投资策略,新增了建仓线、加仓线和重仓线,以提供更精准的投资建议。 ... [详细]
author-avatar
何cecilio
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有