热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

决策树分类鸢尾花数据demo

code:importnumpyasnpimportpandasaspdimportmatplotlib.pyplotaspltimportmatplotlib

code:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mpl
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
import pydotplus

if __name__ == "__main__":
   
	iris_feature_E = "sepal lenght", "sepal width", "petal length", "petal width"
	iris_feature = "the length of sepal", "the width of sepal", "the length of petal", "the width of petal"
	iris_class = "Iris-setosa", "Iris-versicolor", "Iris-virginica"
	
	data = pd.read_csv("iris.data", header=None)
	iris_types = data[4].unique()
	for i, type in enumerate(iris_types):
		data.set_value(data[4] == type, 4, i)
	x, y = np.split(data.values, (4,), axis=1)
	x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=0.7, random_state=1)
	print(y_test)

	model = DecisionTreeClassifier(criterion='entropy', max_depth=6)
	model = model.fit(x_train, y_train)
	y_test_hat = model.predict(x_test)
	with open('iris.dot', 'w') as f:
		tree.export_graphviz(model, out_file=f)
	dot_data = tree.export_graphviz(model, out_file=None, feature_names=iris_feature_E, class_names=iris_class,
		filled=True, rounded=True, special_characters=True)
	graph = pydotplus.graph_from_dot_data(dot_data)
	graph.write_pdf('iris.pdf')
	f = open('iris.png', 'wb')
	f.write(graph.create_png())
	f.close()

	# 画图
	# 横纵各采样多少个值
	N, M = 50, 50
	# 第0列的范围
	x1_min, x1_max = x[:, 0].min(), x[:, 0].max()
	# 第1列的范围
	x2_min, x2_max = x[:, 1].min(), x[:, 1].max()
	t1 = np.linspace(x1_min, x1_max, N)
	t2 = np.linspace(x2_min, x2_max, M)
	# 生成网格采样点
	x1, x2 = np.meshgrid(t1, t2)
    # # 无意义,只是为了凑另外两个维度
    # # 打开该注释前,确保注释掉x = x[:, :2]
	x3 = np.ones(x1.size) * np.average(x[:, 2])
	x4 = np.ones(x1.size) * np.average(x[:, 3])
	# 测试点
	x_show = np.stack((x1.flat, x2.flat, x3, x4), axis=1)
	print("x_show_shape:\n", x_show.shape)

	cm_light = mpl.colors.ListedColormap(['#77E0A0', '#FF8080', '#A0A0FF'])
	cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])
	# 预测值
	y_show_hat = model.predict(x_show)
	print(y_show_hat.shape)
	print(y_show_hat)
	# 使之与输入的形状相同
	y_show_hat = y_show_hat.reshape(x1.shape)
	print(y_show_hat)
	plt.figure(figsize=(15, 15), facecolor='w')
	# 预测值的显示
	plt.pcolormesh(x1, x2, y_show_hat, cmap=cm_light)
	print(y_test)
	print(y_test.ravel())
	# 测试数据
	plt.scatter(x_test[:, 0], x_test[:, 1], c=np.squeeze(y_test), edgecolors='k', s=120, cmap=cm_dark, marker='*')
	# 全部数据
	plt.scatter(x[:, 0], x[:, 1], c=np.squeeze(y), edgecolors='k', s=40, cmap=cm_dark)
	plt.xlabel(iris_feature[0], fOntsize=15)
	plt.ylabel(iris_feature[1], fOntsize=15)
	plt.xlim(x1_min, x1_max)
	plt.ylim(x2_min, x2_max)
	plt.grid(True)
	plt.title('yuanwei flowers regressiong with DecisionTree', fOntsize=17)
	plt.show()

	# 训练集上的预测结果
	y_test = y_test.reshape(-1)
	print(y_test_hat)
	print(y_test)
	# True则预测正确,False则预测错误
	result = (y_test_hat == y_test)
	acc = np.mean(result)
	print('accuracy: %.2f%%' % (100 * acc))

    # 过拟合:错误率
	depth = np.arange(1, 15)
	err_list = []
	for d in depth:
		clf = DecisionTreeClassifier(criterion='entropy', max_depth=d)
		clf = clf.fit(x_train, y_train)
		# 测试数据
		y_test_hat = clf.predict(x_test)
		# True则预测正确,False则预测错误
		result = (y_test_hat == y_test)
		err = 1 - np.mean(result)
		err_list.append(err)
		print(d, 'error ratio: %.2f%%' % (100 * err))
	plt.figure(figsize=(15, 15), facecolor='w')
	plt.plot(depth, err_list, 'ro-', lw=2)
	plt.xlabel('DecisionTree Depth', fOntsize=15)
	plt.ylabel('error ratio', fOntsize=15)
	plt.title('DecisionTree Depth and Overfit', fOntsize=17)
	plt.grid(True)
	plt.show()

生成的图文件:



鸢尾花的数据特征一共有四种:花萼长度、花萼宽度,花瓣长度,花瓣宽度。然后再使用决策树两两特征进行分类:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mpl
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
import pydotplus

if __name__ == "__main__":
   
	iris_feature_E = "sepal lenght", "sepal width", "petal length", "petal width"
	iris_feature = "the length of sepal", "the width of sepal", "the length of petal", "the width of petal"
	iris_class = "Iris-setosa", "Iris-versicolor", "Iris-virginica"
	
	data = pd.read_csv("iris.data", header=None)
	iris_types = data[4].unique()
	for i, type in enumerate(iris_types):
		data.set_value(data[4] == type, 4, i)
	x_train, y = np.split(data.values, (4,), axis=1)

	feature_pairs = [(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]
	plt.figure(figsize=(15, 15), facecolor='w')
	for i, pair in enumerate(feature_pairs):
		# 准备数据
		x = x_train[:, pair]
		# 决策树进行学习
		clf = DecisionTreeClassifier(criterion='entropy', min_samples_leaf=3)
		dt_clf = clf.fit(x, y)
		# 开始画图
		N, M = 500, 500
		# 第0列的范围
		x1_min, x1_max = x[:, 0].min(), x[:, 0].max()   
    	# 第1列的范围
		x2_min, x2_max = x[:, 1].min(), x[:, 1].max()   
		t1 = np.linspace(x1_min, x1_max, N)
		t2 = np.linspace(x2_min, x2_max, M)
    	# 生成网格采样点
		x1, x2 = np.meshgrid(t1, t2)           
    	# 测试点         
		x_test = np.stack((x1.flat, x2.flat), axis=1)
		# 在训练集上预测结果
		y_hat = dt_clf.predict(x)
		y = y.reshape(-1)
		# 统计预测正确的个数
		c = np.count_nonzero(y_hat == y)
		print("y_hat:\n", y_hat)
		print("y:\n", y)
		'''
		set1 = set(y_hat)
		set2 = set(y)
		print(list(set1 & set2))
		if y_hat.any() != y.any():
			print('predict:%.3f   real:%.3f' %(y_hat.all(), y.all()))
		'''
		# 打印相关信息
		print('features:\t', iris_feature[pair[0]], ' + ', iris_feature[pair[1]])
		print('the number of true prediction:', c)
		print('acc:%.2f%%' %(100 * float(c) / float(len(y))))

		# 画图显示
		cm_light = mpl.colors.ListedColormap(['#77E0A0', '#FF8080', '#A0A0FF'])
		cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])
		# 预测值
		y_test_hat = dt_clf.predict(x_test)
		# reshape到和输入的x1相同格式
		y_test_hat = y_test_hat.reshape(x1.shape)
		plt.subplot(2, 3, i+1)
		plt.pcolormesh(x1, x2, y_test_hat, cmap=cm_light)
		plt.scatter(x[:, 0], x[:, 1], c=y, edgecolors='k', cmap=cm_dark)
		plt.xlabel(iris_feature[pair[0]], fOntsize=14)
		plt.ylabel(iris_feature[pair[1]], fOntsize=14)
		plt.xlim(x1_min, x1_max)
		plt.ylim(x2_min, x2_max)
		plt.grid()
	plt.suptitle('the result of yuanwei flowers in each two features with dcisiontree', fOntsize=20)
	plt.tight_layout(2)
	plt.subplots_adjust(top=0.92)
	plt.show()


显然第二种组合效果还可以的。

接着我们使用随机森林算法来分类看看效果:

只需要在上面的代码中修改:

# 决策树进行学习
clf = DecisionTreeRegressor(n_estimators=200, criterion='entropy', max_depth=6)

为:

# 决策树进行学习
clf = RandomForestClassifier(n_estimators=200, criterion='entropy', max_depth=6)

效果:


看得出来随机森林的分类要比决策树好,随机森林因为是根据多个决策树弱分类器联合成一个强分类器,所以其边界出呈现很多的锯齿,分类的准确度也提高很多,150个数据,最后只有一个分错。


推荐阅读
  • 如何高效启动大数据应用之旅?
    在前一篇文章中,我探讨了大数据的定义及其与数据挖掘的区别。本文将重点介绍如何高效启动大数据应用项目,涵盖关键步骤和最佳实践,帮助读者快速踏上大数据之旅。 ... [详细]
  • Ihavetwomethodsofgeneratingmdistinctrandomnumbersintherange[0..n-1]我有两种方法在范围[0.n-1]中生 ... [详细]
  • 本文详细介绍了如何使用 Python 进行主成分分析(PCA),包括数据导入、预处理、模型训练和结果可视化等步骤。通过具体的代码示例,帮助读者理解和应用 PCA 技术。 ... [详细]
  • 本文介绍如何使用OpenCV和线性支持向量机(SVM)模型来开发一个简单的人脸识别系统,特别关注在只有一个用户数据集时的处理方法。 ... [详细]
  • 开机自启动的几种方式
    0x01快速自启动目录快速启动目录自启动方式源于Windows中的一个目录,这个目录一般叫启动或者Startup。位于该目录下的PE文件会在开机后进行自启动 ... [详细]
  • 本文将详细介绍如何在Mac上安装Jupyter Notebook,并提供一些常见的问题解决方法。通过这些步骤,您将能够顺利地在Mac上运行Jupyter Notebook。 ... [详细]
  • 大类|电阻器_使用Requests、Etree、BeautifulSoup、Pandas和Path库进行数据抓取与处理 | 将指定区域内容保存为HTML和Excel格式
    大类|电阻器_使用Requests、Etree、BeautifulSoup、Pandas和Path库进行数据抓取与处理 | 将指定区域内容保存为HTML和Excel格式 ... [详细]
  • ### 优化后的摘要本文对 HDU ACM 1073 题目进行了详细解析,该题属于基础字符串处理范畴。通过分析题目要求,我们可以发现这是一道较为简单的题目。代码实现中使用了 C++ 语言,并定义了一个常量 `N` 用于字符串长度的限制。主要操作包括字符串的输入、处理和输出,具体步骤涉及字符数组的初始化和字符串的逆序操作。通过对该题目的深入探讨,读者可以更好地理解字符串处理的基本方法和技巧。 ... [详细]
  • 在Cisco IOS XR系统中,存在提供服务的服务器和使用这些服务的客户端。本文深入探讨了进程与线程状态转换机制,分析了其在系统性能优化中的关键作用,并提出了改进措施,以提高系统的响应速度和资源利用率。通过详细研究状态转换的各个环节,本文为开发人员和系统管理员提供了实用的指导,旨在提升整体系统效率和稳定性。 ... [详细]
  • 2018 HDU 多校联合第五场 G题:Glad You Game(线段树优化解法)
    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6356在《Glad You Game》中,Steve 面临一个复杂的区间操作问题。该题可以通过线段树进行高效优化。具体来说,线段树能够快速处理区间更新和查询操作,从而大大提高了算法的效率。本文详细介绍了线段树的构建和维护方法,并给出了具体的代码实现,帮助读者更好地理解和应用这一数据结构。 ... [详细]
  • 本文介绍了如何利用ObjectMapper实现JSON与JavaBean之间的高效转换。ObjectMapper是Jackson库的核心组件,能够便捷地将Java对象序列化为JSON格式,并支持从JSON、XML以及文件等多种数据源反序列化为Java对象。此外,还探讨了在实际应用中如何优化转换性能,以提升系统整体效率。 ... [详细]
  • Android中将独立SO库封装进JAR包并实现SO库的加载与调用
    在Android开发中,将独立的SO库封装进JAR包并实现其加载与调用是一个常见的需求。本文详细介绍了如何将SO库嵌入到JAR包中,并确保在外部应用调用该JAR包时能够正确加载和使用这些SO库。通过这种方式,开发者可以更方便地管理和分发包含原生代码的库文件,提高开发效率和代码复用性。文章还探讨了常见的问题及其解决方案,帮助开发者避免在实际应用中遇到的坑。 ... [详细]
  • 本文总结了JavaScript的核心知识点和实用技巧,涵盖了变量声明、DOM操作、事件处理等重要方面。例如,通过`event.srcElement`获取触发事件的元素,并使用`alert`显示其HTML结构;利用`innerText`和`innerHTML`属性分别设置和获取文本内容及HTML内容。此外,还介绍了如何在表单中动态生成和操作``元素,以便更好地处理用户输入。这些技巧对于提升前端开发效率和代码质量具有重要意义。 ... [详细]
  • Python 实战:异步爬虫(协程技术)与分布式爬虫(多进程应用)深入解析
    本文将深入探讨 Python 异步爬虫和分布式爬虫的技术细节,重点介绍协程技术和多进程应用在爬虫开发中的实际应用。通过对比多进程和协程的工作原理,帮助读者理解两者在性能和资源利用上的差异,从而在实际项目中做出更合适的选择。文章还将结合具体案例,展示如何高效地实现异步和分布式爬虫,以提升数据抓取的效率和稳定性。 ... [详细]
  • 题目链接:POJ 2777。问题描述:给定一个区域,需要进行多次涂色操作,并在每次操作后查询某个区间内的不同颜色数量。解决方案:由于题目中颜色种类不超过30种,可以利用线段树的懒惰更新策略来高效处理这些操作。通过懒惰标记,避免了不必要的节点更新,从而显著提高了算法的效率。此外,该方法还能有效应对大规模数据输入,确保在合理的时间内完成所有操作。 ... [详细]
author-avatar
黑色鲜花_866
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有