热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

具有不同尺寸图像的张量流卷积神经网络

如何解决《具有不同尺寸图像的张量流卷积神经网络》经验,为你挑选了1个好方法。



1> Maxim..:

动态占位符

Tensorflow允许在占位符中具有多个动态(aka None)维度.在构建图形时,引擎将无法确保正确性,因此客户端负责提供正确的输入,但它提供了很大的灵活性.

所以我要去......

x = tf.placeholder(tf.float32, shape=[None, N*M*P])
y_ = tf.placeholder(tf.float32, shape=[None, N*M*P, 3])
...
x_image = tf.reshape(x, [-1, N, M, P, 1])

至...

# Nearly all dimensions are dynamic
x_image = tf.placeholder(tf.float32, shape=[None, None, None, None, 1])
label = tf.placeholder(tf.float32, shape=[None, None, 3])

既然您打算将输入重新整形为5D,那么为什么不x_image从一开始就使用5D .此时,第二维label是任意的,但我们保证它将匹配的张量流x_image.

反卷积中的动态形状

接下来,好处tf.nn.conv3d_transpose是它的输出形状可以是动态的.所以不是这样的:

# Hard-coded output shape
DeConnv1 = tf.nn.conv3d_transpose(layer1, w, output_shape=[1,32,32,7,1], ...)

... 你可以这样做:

# Dynamic output shape
DeConnv1 = tf.nn.conv3d_transpose(layer1, w, output_shape=tf.shape(x_image), ...)

这样,转置卷积可以应用于任何图像,结果将采用x_image在运行时实际传递的形状.

注意静态形状x_image(?, ?, ?, ?, 1).

全卷积网络

这个难题的最后和最重要的部分是使整个网络卷积,并且包括你的最终密集层.密集层必须静态定义其尺寸,这迫使整个神经网络修复输入图像尺寸.

对我们来说幸运的是,Springenberg在"努力实现简单:全面卷积网"论文中描述了用CONV层取代FC层的方法.我将使用带有3个1x1x1过滤器的卷积(另请参阅此问题):

final_cOnv= conv3d_s1(final, weight_variable([1, 1, 1, 1, 3]))
y = tf.reshape(final_conv, [-1, 3])

如果我们确保它finalDeConnv1(和其他)具有相同的尺寸,它将使y我们想要的形状正确:[-1, N * M * P, 3].

将它们结合在一起

您的网络非常庞大,但所有解卷积基本上都遵循相同的模式,因此我将概念验证代码简化为一个解卷积.目标只是展示哪种网络能够处理任意大小的图像.最后再说一句:图像尺寸可变化之间的批次,但一个批次内,他们必须是相同的.

完整代码:

sess = tf.InteractiveSession()

def conv3d_dilation(tempX, tempFilter):
  return tf.layers.conv3d(tempX, filters=tempFilter, kernel_size=[3, 3, 1], strides=1, padding='SAME', dilation_rate=2)

def conv3d(tempX, tempW):
  return tf.nn.conv3d(tempX, tempW, strides=[1, 2, 2, 2, 1], padding='SAME')

def conv3d_s1(tempX, tempW):
  return tf.nn.conv3d(tempX, tempW, strides=[1, 1, 1, 1, 1], padding='SAME')

def weight_variable(shape):
  initial = tf.truncated_normal(shape, stddev=0.1)
  return tf.Variable(initial)

def bias_variable(shape):
  initial = tf.constant(0.1, shape=shape)
  return tf.Variable(initial)

def max_pool_3x3(x):
  return tf.nn.max_pool3d(x, ksize=[1, 3, 3, 3, 1], strides=[1, 2, 2, 2, 1], padding='SAME')

x_image = tf.placeholder(tf.float32, shape=[None, None, None, None, 1])
label = tf.placeholder(tf.float32, shape=[None, None, 3])

W_conv1 = weight_variable([3, 3, 1, 1, 32])
h_conv1 = conv3d(x_image, W_conv1)
# second convolution
W_conv2 = weight_variable([3, 3, 4, 32, 64])
h_conv2 = conv3d_s1(h_conv1, W_conv2)
# third convolution path 1
W_conv3_A = weight_variable([1, 1, 1, 64, 64])
h_conv3_A = conv3d_s1(h_conv2, W_conv3_A)
# third convolution path 2
W_conv3_B = weight_variable([1, 1, 1, 64, 64])
h_conv3_B = conv3d_s1(h_conv2, W_conv3_B)
# fourth convolution path 1
W_conv4_A = weight_variable([3, 3, 1, 64, 96])
h_conv4_A = conv3d_s1(h_conv3_A, W_conv4_A)
# fourth convolution path 2
W_conv4_B = weight_variable([1, 7, 1, 64, 64])
h_conv4_B = conv3d_s1(h_conv3_B, W_conv4_B)
# fifth convolution path 2
W_conv5_B = weight_variable([1, 7, 1, 64, 64])
h_conv5_B = conv3d_s1(h_conv4_B, W_conv5_B)
# sixth convolution path 2
W_conv6_B = weight_variable([3, 3, 1, 64, 96])
h_conv6_B = conv3d_s1(h_conv5_B, W_conv6_B)
# concatenation
layer1 = tf.concat([h_conv4_A, h_conv6_B], 4)
w = tf.Variable(tf.constant(1., shape=[2, 2, 4, 1, 192]))
DeConnv1 = tf.nn.conv3d_transpose(layer1, filter=w, output_shape=tf.shape(x_image), strides=[1, 2, 2, 2, 1], padding='SAME')

final = DeConnv1
final_cOnv= conv3d_s1(final, weight_variable([1, 1, 1, 1, 3]))
y = tf.reshape(final_conv, [-1, 3])
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=label, logits=y))

print('x_image:', x_image)
print('DeConnv1:', DeConnv1)
print('final_conv:', final_conv)

def try_image(N, M, P, B=1):
  batch_x = np.random.normal(size=[B, N, M, P, 1])
  batch_y = np.ones([B, N * M * P, 3]) / 3.0

  deconv_val, final_conv_val, loss = sess.run([DeConnv1, final_conv, cross_entropy],
                                              feed_dict={x_image: batch_x, label: batch_y})
  print(deconv_val.shape)
  print(final_conv.shape)
  print(loss)
  print()

tf.global_variables_initializer().run()
try_image(32, 32, 7)
try_image(16, 16, 3)
try_image(16, 16, 3, 2)


推荐阅读
  • 本文探讨了利用Python实现高效语音识别技术的方法。通过使用先进的语音处理库和算法,本文详细介绍了如何构建一个准确且高效的语音识别系统。提供的代码示例和实验结果展示了该方法在实际应用中的优越性能。相关文件可从以下链接下载:链接:https://pan.baidu.com/s/1RWNVHuXMQleOrEi5vig_bQ,提取码:p57s。 ... [详细]
  • 本文详细介绍了 PHP 中对象的生命周期、内存管理和魔术方法的使用,包括对象的自动销毁、析构函数的作用以及各种魔术方法的具体应用场景。 ... [详细]
  • poj 3352 Road Construction ... [详细]
  • 本文详细介绍了如何在 Python 中忽略警告和错误,提供了多种实现方法,并解释了其背后的原理。对于希望提高代码健壮性和可读性的开发者来说,这些方法非常实用。 ... [详细]
  • 大类|电阻器_使用Requests、Etree、BeautifulSoup、Pandas和Path库进行数据抓取与处理 | 将指定区域内容保存为HTML和Excel格式
    大类|电阻器_使用Requests、Etree、BeautifulSoup、Pandas和Path库进行数据抓取与处理 | 将指定区域内容保存为HTML和Excel格式 ... [详细]
  • 在Windows系统中安装TensorFlow GPU版的详细指南与常见问题解决
    在Windows系统中安装TensorFlow GPU版是许多深度学习初学者面临的挑战。本文详细介绍了安装过程中的每一个步骤,并针对常见的问题提供了有效的解决方案。通过本文的指导,读者可以顺利地完成安装并避免常见的陷阱。 ... [详细]
  • 您的数据库配置是否安全?DBSAT工具助您一臂之力!
    本文探讨了Oracle提供的免费工具DBSAT,该工具能够有效协助用户检测和优化数据库配置的安全性。通过全面的分析和报告,DBSAT帮助用户识别潜在的安全漏洞,并提供针对性的改进建议,确保数据库系统的稳定性和安全性。 ... [详细]
  • PTArchiver工作原理详解与应用分析
    PTArchiver工作原理及其应用分析本文详细解析了PTArchiver的工作机制,探讨了其在数据归档和管理中的应用。PTArchiver通过高效的压缩算法和灵活的存储策略,实现了对大规模数据的高效管理和长期保存。文章还介绍了其在企业级数据备份、历史数据迁移等场景中的实际应用案例,为用户提供了实用的操作建议和技术支持。 ... [详细]
  • 深入解析Struts、Spring与Hibernate三大框架的面试要点与技巧 ... [详细]
  • 使用 ListView 浏览安卓系统中的回收站文件 ... [详细]
  • 通过使用 `pandas` 库中的 `scatter_matrix` 函数,可以有效地绘制出多个特征之间的两两关系。该函数不仅能够生成散点图矩阵,还能通过参数如 `frame`、`alpha`、`c`、`figsize` 和 `ax` 等进行自定义设置,以满足不同的可视化需求。此外,`diagonal` 参数允许用户选择对角线上的图表类型,例如直方图或密度图,从而提供更多的数据洞察。 ... [详细]
  • 基于 Vue 和 Element UI 实现的简洁登录界面设计
    本文介绍了一种利用 Vue.js 和 Element UI 框架构建的简洁登录界面设计。该设计不仅注重用户体验,还确保了界面的美观性和易用性。通过合理的布局和组件配置,实现了高效、响应式的登录功能,适用于多种前端应用场景。 ... [详细]
  • 本文详细介绍了使用 Python 进行 MySQL 和 Redis 数据库操作的实战技巧。首先,针对 MySQL 数据库,通过 `pymysql` 模块展示了如何连接和操作数据库,包括建立连接、执行查询和更新等常见操作。接着,文章深入探讨了 Redis 的基本命令和高级功能,如键值存储、列表操作和事务处理。此外,还提供了多个实际案例,帮助读者更好地理解和应用这些技术。 ... [详细]
  • 【图像分类实战】利用DenseNet在PyTorch中实现秃头识别
    本文详细介绍了如何使用DenseNet模型在PyTorch框架下实现秃头识别。首先,文章概述了项目所需的库和全局参数设置。接着,对图像进行预处理并读取数据集。随后,构建并配置DenseNet模型,设置训练和验证流程。最后,通过测试阶段验证模型性能,并提供了完整的代码实现。本文不仅涵盖了技术细节,还提供了实用的操作指南,适合初学者和有经验的研究人员参考。 ... [详细]
  • 在前文探讨了Spring如何为特定的bean选择合适的通知器后,本文将进一步深入分析Spring AOP框架中代理对象的生成机制。具体而言,我们将详细解析如何通过代理技术将通知器(Advisor)中包含的通知(Advice)应用到目标bean上,以实现切面编程的核心功能。 ... [详细]
author-avatar
孤火自燃
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有