热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

交互式分割相关工作【2019/7/6】

文章目录1.clicksscribbles2.boundingbox3.controlpoints1.clicksscribbles[1]Interactivegraphcutsf

文章目录

  • 1. clicks / scribbles
  • 2. bounding box
  • 3. control points




1. clicks / scribbles

[1] Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images

ICCV 2001

被引量: 4519(2019/6)
作者: Yuri Y. Boykov, Marie-Pierre Jolly
交互方式: click / scribble

Intro: Graph-cuts [1.1] marks some seed pixels belong to background or foreground, then uses max-flow/min-cut algorithm to provide a global optimal solution for an N-dimensional segmentation.


[2] Extreme clicking for efficient object annotation

ICCV 2017

作者: Dim P. Papadopoulos, Jasper R. R. Uijlings, Frank Keller, Vittorio Ferrari
被引量: 49(2019/7)
交互方法: click -> bounding box

Intro: [1.2] proposes extreme clicking strategy to replace the traditional drawing bounding box method, which lets user to click on the top, bottom, left and right-most points of an object and then incorporates them into GrabCut to obtain segmentation result.


[3] Deep extreme cut: From extreme points to object segmentation

CVPR 2018

作者: Kevis-Kokitsi Maninis, Sergi Caelles, Jordi Pont-Tuset, Luc Van Gool
被引量: 44(2019/7)
交互方式: click / scribble

Intro: Based on [1.2], [1.3] proposes a CNN network DEXTR, that turns extreme clicking annotations (left-most, right-most, top, bottom points) into object masks.


[4] Large-scale interactive object segmentation with human annotators

CVPR 2019

作者: Rodrigo Benenson, Stefan Popov, Vittorio Ferrari
被引量: 1(2019/7)
交互方式: click / scribble

Intro: [1.4] allows user to focus on correcting the outputs for multiple rounds, which are generated by automatic segmentation model and then the model incorporates all scribbles to refine the segmentation result.


[5] Fast User-Guided Video Object Segmentation by Interaction-and-Propagation Networks

CVPR 2019

作者: Seoung Wug Oh, Joon-Young Lee, Ning Xu, Seon Joo Kim
被引次数: 1(2019/7)
交互方式: click / scribble

Intro: [1.5] proposes a multi-round training strategy for interactive video objects segmentation, lets the model understand the users’ intention and refine mis-segmentation regions during training phase.


[6] Interactive Full Image Segmentation by Considering All Regions Jointly

CVPR 2019

作者: Eirikur Agustsson, Jasper R. R. Uijlings, Vittorio Ferrari
被引量: 1(2019/7)
交互方式: scribble

Intro: [1.6] proposes to derive an initial segmentation result for the whole image based on [1.2], then use the initial prediction result as the input of the annotator, and iterate between the annotator make a refinement on the mis-segmentaion area and update the segmentation results accordingly.


[7] Interactive Image Segmentation via Backpropagating Refinement Scheme

CVPR 2019

作者: Won-Dong Jang,Chang-Su Kim
被引量: (2019/7)
交互方式: click / scribble

Intro: [1.7] converts user annotations into interaction maps by measuring distances of each pixel to the annotated locations, at the same time, it develops the backpropagating refinement scheme which corrects the mislabeled pixels.


[8] DeepIGeoS: A Deep Interactive Geodesic Framework for Medical Image Segmentation

PAMI 2019(医学图像)

作者: Guotai Wang , Maria A. Zuluaga , Wenqi Li , Rosalind Pratt, Premal A. Patel, Michael Aertsen, Tom Doel , Anna L. David , Jan Deprest, Sebastien Ourselin, and Tom Vercauteren
被引量: 25 (2019/7)
交互方式: click / scribble

Intro: DeepIGeoS [1.8] proposes an interactive method for 2D and 3D medical image segmentation that combines user interactions with the CNNs through geodesic distance transforms and minimize user interactions while improving segmentation results.



2. bounding box

[1] Grabcut: Interactive foreground extraction using iterated graph cuts

ACM 2004

作者: C. Rother, V. Kolmogorov, and A. Blake
被引量: 5613(2019/7)
交互方法: bounding box + scribbles

Intro: GrabCut[2.1] is based on the discrete graph-cut algorithm[*], and only requires user to draw a rectangle loosely around an object, then the segmentation result is obtained automatically.


[2] Image segmentation with a bounding box prior

ICCV 2009

作者: Victor Lempitsky, Pushmeet Kohli, Carsten Rother, and Toby Sharp
被引量: 339(2019/6)
交互方法: bounding box

Intro: [2.2] mentions that the bounding box can not only be used to exclude background information, but also as a topology prior, thus preventing the segmentation result from shrinking.


[3] MILCut: A Sweeping Line Multiple Instance Learning Paradigm for Interactive Image Segmentation

CVPR 2014

作者: Jiajun Wu, Yibiao Zhao, Jun-Yan Zhu, Siwei Luo, and Zhuowen Tu
被引量: 69(2019/7)
交互方法: bounding box

Intro: [2.3] proposes sweeping-line strategy to perform segmentation task within the bounding box provided by user, which convert the interactive image segmentation into a multiple instance learning problem.


[4] Deep grabcut for object selection

CVPR 2017

作者: Ning Xu, Brian Price, Scott Cohen, Jimei Yang, Thomas Huang
被引量: 14(2019/6)
交互方法: bounding box

Intro: [2.4] takes the bounding box as soft constraint


[5] LooseCut: Interactive Image Segmentation with Loosely Bounded Boxes

CVPR 2015

作者: Hongkai Yu, Youjie Zhou, Hui Qian, Min Xian, Yuewei Lin, Dazhou Guo, Kang Zheng, Kareem Abdelfatah, Song Wang
被引量: 15(2019/6)
交互方法: bounding box

Intro: [2.5] draw some loosely bounded boxes


[6] Interactive Medical Image Segmentation Using Deep Learning With Image-Specific Fine Tuning

TMI 2018(医学图像)

作者: Guotai Wang , Wenqi Li , Maria A. Zuluaga , Rosalind Pratt, Premal A. Patel, Michael Aertsen, Tom Doel, Anna L. David, Jan Deprest, Sébastien Ourselin, and Tom Vercauteren
被引量: 60(2019/7)
交互方式: bounding box and optional scribbles

Intro: BIFSeg[2.6] design a 2D and a 3D CNN and combine with bounding box and optional user scribbles to achieve higher precision, and propose image-specific fine-tuning to address the current problem that CNNs can not generalize well to object classes that do not exist in training sets.



3. control points

[1] Annotating object instances with a polygon-rnn

CVPR 2017

作者: Lluis Castrejon, Kaustav Kundu, Raquel Urtasun, Sanja Fidler
被引量: 59(2019/7)
交互方式: control points

Intro: Polygon-RNN [3.1] treats the segmentation task as a polygon prediction problem, that is, predicts the vertices of a polygon that outlines the object, and allow user to interfere at any time and correct a vertex if needed.


[2] Efficient interactive annotation of segmentation datasets with polygon-rnn++

CVPR 2018

作者: David Acuna, Huan Ling, Amlan Kar, Sanja Fidler
被引量: 43(2019/7)
交互方式: control points

Intro: Polygon-RNN ++[3.2] is based on polygon-RNN, but it further proposes to use reinforcemet learning to train the network and uses Graph Neural Network to increase the segmentation result resolution.


[3] Fast Interactive Object Annotation with Curve-GCN

CVPR 2019

作者: Huan Ling, Jun Gao, Amlan Kar, Wenzheng Chen, Sanja Fidler
被引量: 2(2019/7)
交互方式: control points

Intro: Different from the sequential nature of Polygon RNN, [3.3] regards the object annotation problem as a regression problem, this model can predicting all vertices simultaneously by using Graph Convolutional Network(GCN).


推荐阅读
  • poj 3352 Road Construction ... [详细]
  • [转]doc,ppt,xls文件格式转PDF格式http:blog.csdn.netlee353086articledetails7920355确实好用。需要注意的是#import ... [详细]
  • javascript分页类支持页码格式
    前端时间因为项目需要,要对一个产品下所有的附属图片进行分页显示,没考虑ajax一张张请求,所以干脆一次性全部把图片out,然 ... [详细]
  • 解决Bootstrap DataTable Ajax请求重复问题
    在最近的一个项目中,我们使用了JQuery DataTable进行数据展示,虽然使用起来非常方便,但在测试过程中发现了一个问题:当查询条件改变时,有时查询结果的数据不正确。通过FireBug调试发现,点击搜索按钮时,会发送两次Ajax请求,一次是原条件的请求,一次是新条件的请求。 ... [详细]
  • 在《Cocos2d-x学习笔记:基础概念解析与内存管理机制深入探讨》中,详细介绍了Cocos2d-x的基础概念,并深入分析了其内存管理机制。特别是针对Boost库引入的智能指针管理方法进行了详细的讲解,例如在处理鱼的运动过程中,可以通过编写自定义函数来动态计算角度变化,利用CallFunc回调机制实现高效的游戏逻辑控制。此外,文章还探讨了如何通过智能指针优化资源管理和避免内存泄漏,为开发者提供了实用的编程技巧和最佳实践。 ... [详细]
  • DVWA学习笔记系列:深入理解CSRF攻击机制
    DVWA学习笔记系列:深入理解CSRF攻击机制 ... [详细]
  • 本文介绍了如何利用Struts1框架构建一个简易的四则运算计算器。通过采用DispatchAction来处理不同类型的计算请求,并使用动态Form来优化开发流程,确保代码的简洁性和可维护性。同时,系统提供了用户友好的错误提示,以增强用户体验。 ... [详细]
  • C++ 异步编程中获取线程执行结果的方法与技巧及其在前端开发中的应用探讨
    本文探讨了C++异步编程中获取线程执行结果的方法与技巧,并深入分析了这些技术在前端开发中的应用。通过对比不同的异步编程模型,本文详细介绍了如何高效地处理多线程任务,确保程序的稳定性和性能。同时,文章还结合实际案例,展示了这些方法在前端异步编程中的具体实现和优化策略。 ... [详细]
  • 在Android平台中,播放音频的采样率通常固定为44.1kHz,而录音的采样率则固定为8kHz。为了确保音频设备的正常工作,底层驱动必须预先设定这些固定的采样率。当上层应用提供的采样率与这些预设值不匹配时,需要通过重采样(resample)技术来调整采样率,以保证音频数据的正确处理和传输。本文将详细探讨FFMpeg在音频处理中的基础理论及重采样技术的应用。 ... [详细]
  • Flutter 2.* 路由管理详解
    本文详细介绍了 Flutter 2.* 中的路由管理机制,包括路由的基本概念、MaterialPageRoute 的使用、Navigator 的操作方法、路由传值、命名路由及其注册、路由钩子等。 ... [详细]
  • 本文详细介绍了在 CentOS 7 系统中配置 fstab 文件以实现开机自动挂载 NFS 共享目录的方法,并解决了常见的配置失败问题。 ... [详细]
  • 为了在Hadoop 2.7.2中实现对Snappy压缩和解压功能的原生支持,本文详细介绍了如何重新编译Hadoop源代码,并优化其Native编译过程。通过这一优化,可以显著提升数据处理的效率和性能。此外,还探讨了编译过程中可能遇到的问题及其解决方案,为用户提供了一套完整的操作指南。 ... [详细]
  • 本文深入解析了WCF Binding模型中的绑定元素,详细介绍了信道、信道管理器、信道监听器和信道工厂的概念与作用。从对象创建的角度来看,信道管理器负责信道的生成。具体而言,客户端的信道通过信道工厂进行实例化,而服务端则通过信道监听器来接收请求。文章还探讨了这些组件之间的交互机制及其在WCF通信中的重要性。 ... [详细]
  • 优化后的标题:深入探讨网关安全:将微服务升级为OAuth2资源服务器的最佳实践
    本文深入探讨了如何将微服务升级为OAuth2资源服务器,以订单服务为例,详细介绍了在POM文件中添加 `spring-cloud-starter-oauth2` 依赖,并配置Spring Security以实现对微服务的保护。通过这一过程,不仅增强了系统的安全性,还提高了资源访问的可控性和灵活性。文章还讨论了最佳实践,包括如何配置OAuth2客户端和资源服务器,以及如何处理常见的安全问题和错误。 ... [详细]
  • Python 程序转换为 EXE 文件:详细解析 .py 脚本打包成独立可执行文件的方法与技巧
    在开发了几个简单的爬虫 Python 程序后,我决定将其封装成独立的可执行文件以便于分发和使用。为了实现这一目标,首先需要解决的是如何将 Python 脚本转换为 EXE 文件。在这个过程中,我选择了 Qt 作为 GUI 框架,因为之前对此并不熟悉,希望通过这个项目进一步学习和掌握 Qt 的基本用法。本文将详细介绍从 .py 脚本到 EXE 文件的整个过程,包括所需工具、具体步骤以及常见问题的解决方案。 ... [详细]
author-avatar
鲁小姐就不用围脖
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有