热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

使用tensorflow进行手写数字分类预测的kaggle实战

2018年9月20日笔记kaggle网站手写数字分类的比赛链接:https:www.kaggle.comcdigit-recognizer注册账号后才能参加kaggl

2018年9月20日笔记

kaggle网站手写数字分类的比赛链接:https://www.kaggle.com/c/digit-recognizer
注册账号后才能参加kaggle比赛,本文作者成绩前2%,如下图所示:

10345471-a863b32dae2066a6.png
image.png

0.尝试提交

本文作者提供一份能够获得较好成绩的文件,读者可以提交该文件熟悉提交流程。
下载链接: https://pan.baidu.com/s/1QKVMmAnW7Ui1104fhfiljg 提取码: mqex
该作答文件的提交成绩有0.99814,如果读者想提高成绩到0.99985,请阅读后面的章节。

1.配置环境

使用卷积神经网络模型要求有较高的机器配置,如果使用CPU版tensorflow会花费大量时间。
读者在有nvidia显卡的情况下,安装GPU版tensorflow会提高计算速度50倍。
安装教程链接:https://blog.csdn.net/qq_36556893/article/details/79433298
如果没有nvidia显卡,但有visa信用卡,请阅读我的另一篇文章《在谷歌云服务器上搭建深度学习平台》,链接:https://www.jianshu.com/p/893d622d1b5a

2.下载并解压数据集

MNIST数据集下载链接: https://pan.baidu.com/s/1fPbgMqsEvk2WyM9hy5Em6w 密码: wa9p
下载压缩文件MNIST_data.rar完成后,选择解压到当前文件夹,不要选择解压到MNIST_data。
文件夹结构如下图所示:

10345471-2465b3dc31757727.png
image.png

3.模型训练并保存

本文作者此段代码是在谷歌云服务器上运行,谷歌云服务器的GPU显存有16G。
因为个人电脑GPU的显存不足,读者可能无法运行,解决办法是减少feed_dict中的样本数量。
理解下面一段代码,请阅读本文作者的另外一篇文章《基于tensorflow+CNN的MNIST数据集手写数字分类》,链接:https://www.jianshu.com/p/a652f1cb95b4

import warnings
warnings.filterwarnings('ignore')
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import random
import numpy as npmnist = input_data.read_data_sets('MNIST_data', one_hot=True)
batch_size = 300
X_holder = tf.placeholder(tf.float32)
y_holder = tf.placeholder(tf.float32)
X = np.vstack([mnist.train.images, mnist.test.images, mnist.validation.images])
y = np.vstack([mnist.train.labels, mnist.test.labels, mnist.validation.labels])
print(X.shape, y.shape)X_images = tf.reshape(X_holder, [-1, 28, 28, 1])
#convolutional layer 1
conv1_Weights = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1), name='conv1_Weights')
conv1_biases = tf.Variable(tf.constant(0.1, shape=[32]), name='conv1_biases')
conv1_conv2d = tf.nn.conv2d(X_images, conv1_Weights, strides=[1, 1, 1, 1], padding='SAME') + conv1_biases
conv1_activated = tf.nn.relu(conv1_conv2d)
conv1_pooled = tf.nn.max_pool(conv1_activated, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
#convolutional layer 2
conv2_Weights = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1), name='conv2_Weights')
conv2_biases = tf.Variable(tf.constant(0.1, shape=[64]), name='conv2_biases')
conv2_conv2d = tf.nn.conv2d(conv1_pooled, conv2_Weights, strides=[1, 1, 1, 1], padding='SAME') + conv2_biases
conv2_activated = tf.nn.relu(conv2_conv2d)
conv2_pooled = tf.nn.max_pool(conv2_activated, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
#full connected layer 1
connect1_flat = tf.reshape(conv2_pooled, [-1, 7 * 7 * 64])
connect1_Weights = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1), name='connect1_Weights')
connect1_biases = tf.Variable(tf.constant(0.1, shape=[1024]), name='connect1_biases')
connect1_Wx_plus_b = tf.add(tf.matmul(connect1_flat, connect1_Weights), connect1_biases)
connect1_activated = tf.nn.relu(connect1_Wx_plus_b)
#full connected layer 2
connect2_Weights = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1), name='connect2_Weights')
connect2_biases = tf.Variable(tf.constant(0.1, shape=[10]), name='connect2_biases')
connect2_Wx_plus_b = tf.add(tf.matmul(connect1_activated, connect2_Weights), connect2_biases)
predict_y = tf.nn.softmax(connect2_Wx_plus_b)
#loss and train
loss = tf.reduce_mean(-tf.reduce_sum(y_holder * tf.log(predict_y), 1))
optimizer = tf.train.AdamOptimizer(0.0001)
train = optimizer.minimize(loss)init = tf.global_variables_initializer()
session = tf.Session()
session.run(init)
saver = tf.train.Saver()for i in range(20000):selected_index = random.sample(range(len(y)), k=batch_size)selected_X = X[selected_index]selected_y = y[selected_index]session.run(train, feed_dict={X_holder:selected_X, y_holder:selected_y})if i % 100 == 0:correct_prediction = tf.equal(tf.argmax(predict_y, 1), tf.argmax(y_holder, 1))accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))train_accuracy = session.run(accuracy, feed_dict={X_holder:mnist.train.images, y_holder:mnist.train.labels})test_accuracy = session.run(accuracy, feed_dict={X_holder:mnist.test.images, y_holder:mnist.test.labels})validation_accuracy = session.run(accuracy, feed_dict={X_holder:mnist.validation.images, y_holder:mnist.validation.labels})print('step:%d train accuracy:%.4f test accuracy:%.4f validation accuracy:%.4f' %(i, train_accuracy, test_accuracy, validation_accuracy))if train_accuracy == 1 and test_accuracy == 1 and validation_accuracy == 1:save_path = saver.save(session, 'mnist_cnn_model/mnist_cnn.ckpt')print('Save to path:', save_path)

4.加载模型

本文作者提供获得最佳成绩0.99985的模型,读者可以加载该模型,并用此模型预测并提交成绩。
模型下载链接: https://pan.baidu.com/s/1zVLHdGiZflspV9jPWn_ECA 提取码: nktv
如果读者有服务器,可以尝试获取保存的模型,下载按钮如下图所示:

10345471-b8b336afd8414b71.png
image.png

import warnings
warnings.filterwarnings('ignore')
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_datamnist = input_data.read_data_sets('MNIST_data', one_hot=True)
batch_size = 100
X_holder = tf.placeholder(tf.float32)
y_holder = tf.placeholder(tf.float32)X_images = tf.reshape(X_holder, [-1, 28, 28, 1])
#convolutional layer 1
conv1_Weights = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1), name='conv1_Weights')
conv1_biases = tf.Variable(tf.constant(0.1, shape=[32]), name='conv1_biases')
conv1_conv2d = tf.nn.conv2d(X_images, conv1_Weights, strides=[1, 1, 1, 1], padding='SAME') + conv1_biases
conv1_activated = tf.nn.relu(conv1_conv2d)
conv1_pooled = tf.nn.max_pool(conv1_activated, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
#convolutional layer 2
conv2_Weights = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1), name='conv2_Weights')
conv2_biases = tf.Variable(tf.constant(0.1, shape=[64]), name='conv2_biases')
conv2_conv2d = tf.nn.conv2d(conv1_pooled, conv2_Weights, strides=[1, 1, 1, 1], padding='SAME') + conv2_biases
conv2_activated = tf.nn.relu(conv2_conv2d)
conv2_pooled = tf.nn.max_pool(conv2_activated, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
#full connected layer 1
connect1_flat = tf.reshape(conv2_pooled, [-1, 7 * 7 * 64])
connect1_Weights = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1), name='connect1_Weights')
connect1_biases = tf.Variable(tf.constant(0.1, shape=[1024]), name='connect1_biases')
connect1_Wx_plus_b = tf.add(tf.matmul(connect1_flat, connect1_Weights), connect1_biases)
connect1_activated = tf.nn.relu(connect1_Wx_plus_b)
#full connected layer 2
connect2_Weights = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1), name='connect2_Weights')
connect2_biases = tf.Variable(tf.constant(0.1, shape=[10]), name='connect2_biases')
connect2_Wx_plus_b = tf.add(tf.matmul(connect1_activated, connect2_Weights), connect2_biases)
predict_y = tf.nn.softmax(connect2_Wx_plus_b)
#loss and train
loss = tf.reduce_mean(-tf.reduce_sum(y_holder * tf.log(predict_y), 1))
optimizer = tf.train.AdamOptimizer(0.0001)
train = optimizer.minimize(loss)session = tf.Session()
saver = tf.train.Saver()
saver.restore(session, 'mnist_cnn_model/mnist_cnn.ckpt')
correct_prediction = tf.equal(tf.argmax(predict_y, 1), tf.argmax(y_holder, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print('load model successful')
train_images, train_labels = mnist.train.next_batch(5000)
test_images, test_labels = mnist.test.next_batch(5000)
train_accuracy = session.run(accuracy, feed_dict={X_holder:train_images, y_holder:train_labels})
test_accuracy = session.run(accuracy, feed_dict={X_holder:test_images, y_holder:test_labels})
print('train accuracy:%.4f test accuracy:%.4f' %(train_accuracy, test_accuracy))

上面一段代码的运行结果如下:

Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
INFO:tensorflow:Restoring parameters from mnist_cnn_model/mnist_cnn.ckpt
load model successful
train accuracy:1.0000 test accuracy:1.0000

5.模型预测

此第5张能够成功运行的前提是已经成功运行第4章的代码,即加载模型成功。
将测试样本分成6份,可以解决因为显存不足无法运行的问题。

import pandas as pdtest_df = pd.read_csv('test.csv')
X = test_df.values
print('特征矩阵的形状:', X.shape)
X1 = X[:5000]
X2 = X[5000:10000]
X3 = X[10000:15000]
X4 = X[15000:20000]
X5 = X[20000:25000]
X6 = X[25000:]
y1 = session.run(predict_y, feed_dict={X_holder:X1})
y2 = session.run(predict_y, feed_dict={X_holder:X2})
y3 = session.run(predict_y, feed_dict={X_holder:X3})
y4 = session.run(predict_y, feed_dict={X_holder:X4})
y5 = session.run(predict_y, feed_dict={X_holder:X5})
y6 = session.run(predict_y, feed_dict={X_holder:X6})import numpy as np
y = np.vstack([y1, y2, y3, y4, y5, y6])
y_argmax = np.argmax(y, 1)
y_argmax.shape
print('预测值的形状:', y_argmax.shape)
commit_df = pd.DataFrame({'ImageId': range(1, 1+len(y_argmax)),'Label': y_argmax})
fileName = 'kaggle_commit3.csv'
commit_df.to_csv(fileName, index=False)
print('预测结果已经保存到文件', fileName)

上面一段代码的运行结果如下:

特征矩阵的形状: (28000, 784)
预测值的形状: (28000,)
预测结果已经保存到文件 kaggle_commit3.csv

6.提交作答文件

比赛链接:https://www.kaggle.com/c/digit-recognizer
点击下面的按钮提交作答文件。

10345471-e9ce63af920c3071.png
image.png

如下图所示,点击上方红色方框标注处可以选择作答文件提交上传。
上传成功后还需要点击下方红色方框提交。
10345471-ba78ca7b769f98e3.png
image.png

提交成功后,可以实时查看作答成绩。

7.总结

1.自己电脑配置不足,使用云服务器极大的加快了工程部署和模型训练速度;
2.在kaggle经典入门赛取得前2%的成绩,把简单的事做到极致;
3.本文作者提供可以加载的模型只能取得0.99571的成绩。


推荐阅读
  • Java实现文本到图片转换,支持自动换行、字体自定义及图像优化
    本文详细介绍了如何使用Java实现将文本转换为图片的功能,包括自动换行、自定义字体加载、抗锯齿优化以及图片压缩等技术细节。 ... [详细]
  • Keras 实战:自编码器入门指南
    本文介绍了使用 Keras 框架实现自编码器的基本方法。自编码器是一种用于无监督学习的神经网络模型,主要功能包括数据降维、特征提取等。通过实际案例,我们将展示如何使用全连接层和卷积层来构建自编码器,并讨论不同维度对重建效果的影响。 ... [详细]
  • 本教程详细介绍了如何使用 TensorFlow 2.0 构建和训练多层感知机(MLP)网络,涵盖回归和分类任务。通过具体示例和代码实现,帮助初学者快速掌握 TensorFlow 的核心概念和操作。 ... [详细]
  • 本文介绍了一种根据目标检测结果,从原始XML文件中提取并分析特定类别的方法。通过解析XML文件,筛选出特定类别的图像和标注信息,并保存到新的文件夹中,以便进一步分析和处理。 ... [详细]
  • 深入浅出TensorFlow数据读写机制
    本文详细介绍TensorFlow中的数据读写操作,包括TFRecord文件的创建与读取,以及数据集(dataset)的相关概念和使用方法。 ... [详细]
  • 本文详细介绍了如何使用 PHP 编程语言输出 99 乘法表,包括使用不同的循环结构如 do-while、for 循环等方法,并提供了具体的代码示例。 ... [详细]
  • 本文介绍如何使用 Java 编程语言来判断一个给定的年份是否为闰年,并提供两种不同的实现方法。 ... [详细]
  • 在Win10上利用VS2015构建Caffe2环境
    本文详细介绍如何在Windows 10操作系统上通过Visual Studio 2015编译Caffe2深度学习框架的过程。包括必要的软件安装、环境配置以及常见问题的解决方法。 ... [详细]
  • 本文详细介绍了使用NumPy和TensorFlow实现的逻辑回归算法。通过具体代码示例,解释了数据加载、模型训练及分类预测的过程。 ... [详细]
  • 在Ubuntu 16.04中使用Anaconda安装TensorFlow
    本文详细介绍了如何在Ubuntu 16.04系统上通过Anaconda环境管理工具安装TensorFlow。首先,需要下载并安装Anaconda,然后配置环境变量以确保系统能够识别Anaconda命令。接着,创建一个特定的Python环境用于安装TensorFlow,并通过指定的镜像源加速安装过程。最后,通过一个简单的线性回归示例验证TensorFlow的安装是否成功。 ... [详细]
  • 本文探讨了图像标签的多种分类场景及其在以图搜图技术中的应用,涵盖了从基础理论到实际项目实施的全面解析。 ... [详细]
  • 本文介绍了如何利用Python进行批量图片尺寸调整,包括放大和等比例缩放。文中提供了详细的代码示例,并解释了每个步骤的具体实现方法。 ... [详细]
  • 解决TensorFlow CPU版本安装中的依赖问题
    本文记录了在安装CPU版本的TensorFlow过程中遇到的依赖问题及解决方案,特别是numpy版本不匹配和动态链接库(DLL)错误。通过详细的步骤说明和专业建议,帮助读者顺利安装并使用TensorFlow。 ... [详细]
  • 随着技术的发展,黑客开始利用AI技术在暗网中创建用户的‘数字孪生’,这一现象引起了安全专家的高度关注。 ... [详细]
  • 深入解析 TiDB Binlog:Pump Storage 实现详解(上)
    本文作者赵一霖,将继续探讨 TiDB Binlog 系统中 Pump Storage 的实现细节,包括其核心功能如持久化存储、数据排序及配对等。 ... [详细]
author-avatar
树缝中间_324
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有