热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

基于WinDbg的内存泄漏分析

基于WinDbg的内存泄漏分析在前面C++中基于Crt的内存泄漏检测一文中提到的方法已经可以解决我们的大部分内存泄露问题了,但是该方法是有前提的,那就是一定要有源代码,而且还只能是Debug版本调试模

基于WinDbg的内存泄漏分析

在前面C++中基于Crt的内存泄漏检测一文中提到的方法已经可以解决我们的大部分内存泄露问题了,但是该方法是有前提的,那就是一定要有源代码,而且还只能是Debug版本调试模式下。实际上很多时候我们的程序会用到第三方没有源代码的模块,有些情况下我们甚至怀疑系统模块有内存泄露,但是有没有证据,我们该怎么办? 这时我们就要依靠无所不能的WinDbg了。

WinDbg的!heap命令非常强大,结合AppVerifier可以对堆(heap)内存进行详细的跟踪和分析, 我们接下来对下面的代码进行内存泄漏的分析:
// MemLeakTest.cpp : Defines the entry point for the console application.
//

#include "stdafx.h"
#include 
#include 

int _tmain(int argc, _TCHAR* argv[])
{
    char* p1 = new char;
    printf("%p\n", p1);

    char* pLargeMem = new char[40000];

    for(int i=0; i<1000; ++i)
    {
        char* p = new char[20];
    }
    
    system("pause");

    return 0;
}

首先下载安装AppVerifier, 可到这里下载, 把我们需要测试的程序添加到AppVerifier的检测列表中, 然后保存。

注: 我们这里用AppVerifier主要是为了打开页堆(page heap)调试功能,你也可以用系统工具 gflags.exe 来做同样的事。 

双击运行我们要调试的MemLeakTest.exe, 效果如下:


然后将WinDbg Attach上去, 输入命令 !heap -p -a 0x02FC1FF8,结果如下:
0:001> !heap -p -a 0x02FC1FF8
    address 02fc1ff8 found in
    _DPH_HEAP_ROOT @ 2f01000
    in busy allocation (  DPH_HEAP_BLOCK:         UserAddr         UserSize -         VirtAddr         VirtSize)
                                 2f02548:          2fc1ff8                1 -          2fc1000             2000
    5a8c8e89 verifier!AVrfDebugPageHeapAllocate+0x00000229
    77485c4e ntdll!RtlDebugAllocateHeap+0x00000030
    77447e5e ntdll!RtlpAllocateHeap+0x000000c4
    774134df ntdll!RtlAllocateHeap+0x0000023a
    5b06a65d vrfcore!VfCoreRtlAllocateHeap+0x00000016
    5a92f9ea vfbasics!AVrfpRtlAllocateHeap+0x000000e2
    72893db8 MSVCR90!malloc+0x00000079
    72893eb8 MSVCR90!operator new+0x0000001f
    012c1008 MemLeakTest!wmain+0x00000008 [f:\test\memleaktest\memleaktest\memleaktest.cpp @ 11]
    77331114 kernel32!BaseThreadInitThunk+0x0000000e
    7741b429 ntdll!__RtlUserThreadStart+0x00000070
    7741b3fc ntdll!_RtlUserThreadStart+0x0000001b

怎么样, 神奇吧?我们当分配该地址内存时的堆栈(stack)被完整地打印了出来。

当然有人很快会说:这是你知道内存地址的情况, 很多情况下我们是不知道该地址的,该如何分析?

对于这种情况, 我们首先需要明确一些概念, 我们new出来的内存是分配在堆上, 那一个进程里究竟有多少个堆, 每个模块都有自己单独的堆吗?实际上一个进程可以有任意多个堆,我们可以通过CreateHeap创建自己单独的堆, 然后通过HeapAlloc分配内存。 我们new出来的内存是crt(C运行库)分配的, 那就涉及到crt究竟有多少个堆了? crt有多少个堆由你编译每个模块(Dll/Exe)时的编译选项决定, 如果你运行库选项用的是/MD, 那就和其他模块共享一个堆; 如果用/MT, 那就是自己单独的堆。大部分情况下我们会用/MD,这样我们在一个模块里new内存, 另一个模块里delete不会有问题, 因为大家共享一个堆。

明确这些概念之后, 我们看看我们的测试程序有多少个堆, 输入!heap -p
0:001> !heap -p

    Active GlobalFlag bits:
        vrf - Enable application verifier
        hpa - Place heap allocations at ends of pages

    StackTraceDataBase @ 00160000 of size 01000000 with 00000034 traces

    PageHeap enabled with options:
        ENABLE_PAGE_HEAP
        COLLECT_STACK_TRACES

    active heaps:

    + 1160000
        ENABLE_PAGE_HEAP COLLECT_STACK_TRACES 
      NormalHeap - 1300000
          HEAP_GROWABLE 
    + 1400000
        ENABLE_PAGE_HEAP COLLECT_STACK_TRACES 
      NormalHeap - 16b0000
          HEAP_GROWABLE HEAP_CLASS_1 
                + 2360000      
        ENABLE_PAGE_HEAP COLLECT_STACK_TRACES 
      NormalHeap - 1280000
          HEAP_GROWABLE HEAP_CLASS_1 
    + 2f00000
        ENABLE_PAGE_HEAP COLLECT_STACK_TRACES 
      NormalHeap - 31d0000
          HEAP_GROWABLE HEAP_CLASS_1 
可以看到我们的测试程序一共有4 个堆。

接下来我们的问题就是确定哪个是我们的crt堆, 也就是我们需要分析每个堆创建时的堆栈(stack)情况.

我们接下来分析最后一个堆, handle是2f00000, 输入!heap -p -h 02f00000 分析该堆的内存分配情况
0:001> !heap -p -h 02f00000
    _DPH_HEAP_ROOT @ 2f01000
    Freed and decommitted blocks
      DPH_HEAP_BLOCK : VirtAddr VirtSize
        02f01f04 : 02f09000 00002000
        02f02e38 : 02f69000 00002000
        037e2548 : 03892000 00002000
        037e2514 : 03894000 00002000
    Busy allocations
      DPH_HEAP_BLOCK : UserAddr  UserSize - VirtAddr VirtSize
        02f01f6c : 02f05de8 00000214 - 02f05000 00002000
        02f01f38 : 02f07800 00000800 - 02f07000 00002000
        02f01ed0 : 02f0bde0 00000220 - 02f0b000 00002000
        02f01e9c : 02f0df50 000000ac - 02f0d000 00002000
        02f01e68 : 02f0ffe0 0000001f - 02f0f000 00002000
        02f01e34 : 02f11fd8 00000028 - 02f11000 00002000
        02f01e00 : 02f13fe0 0000001d - 02f13000 00002000
        02f01dcc : 02f15fc0 0000003a - 02f15000 00002000
        ....

可以看到该堆 _DPH_HEAP_ROOT 结构的地址是 2f01000,通过dt命令打印该结构地址
0:001> dt ntdll!_DPH_HEAP_ROOT CreateStackTrace 2f01000
   +0x0b8 CreateStackTrace : 0x0017cbe4 _RTL_TRACE_BLOCK

可以看到StackTrace的地址是 0x0017cbe4, 通过dds命令打印该地址内的符号
0:001> dds 0x0017cbe4 
0017cbe4  00178714
0017cbe8  00007001
0017cbec  000f0000
0017cbf0  5a8c8969 verifier!AVrfDebugPageHeapCreate+0x439
0017cbf4  7743a9e8 ntdll!RtlCreateHeap+0x41
0017cbf8  5a930109 vfbasics!AVrfpRtlCreateHeap+0x56
0017cbfc  755fdda2 KERNELBASE!HeapCreate+0x55
0017cc00  72893a4a MSVCR90!_heap_init+0x1b
0017cc04  72852bb4 MSVCR90!__p__tzname+0x2a
0017cc08  72852d5e MSVCR90!_CRTDLL_INIT+0x1e
0017cc0c  5a8dc66d verifier!AVrfpStandardDllEntryPointRoutine+0x99
0017cc10  5b069164 vrfcore!VfCoreStandardDllEntryPointRoutine+0x121
0017cc14  5a92689c vfbasics!AVrfpStandardDllEntryPointRoutine+0x9f
0017cc18  7741af58 ntdll!LdrpCallInitRoutine+0x14
0017cc1c  7741fd6f ntdll!LdrpRunInitializeRoutines+0x26f
0017cc20  774290c6 ntdll!LdrpInitializeProcess+0x137e
0017cc24  77428fc8 ntdll!_LdrpInitialize+0x78
0017cc28  7741b2f9 ntdll!LdrInitializeThunk+0x10
0017cc2c  00000000
0017cc30  00009001

现在我们可以看到该堆被Create时的完整堆栈了, 通过堆栈,我们可以看到该堆正是由crt创建的, 也就是说我们new的内存都分配在该堆内。

如果你觉得上面跟踪堆创建的过程太复杂,可以先忽略, 下面我们分析堆状态, 输入!heap -stat -h 0,它会分析所有堆的当前使用状态, 我们着重关注我们的crt堆02f00000:
Allocations statistics for
 heap @ 02f00000
group-by: TOTSIZE max-display: 20
    size     #blocks     total     ( %) (percent of total busy bytes)
    9c40 1 - 9c40  (52.66)
    14 3ea - 4e48  (26.38)
    1000 1 - 1000  (5.39)
    800 2 - 1000  (5.39)
    490 1 - 490  (1.54)
    248 1 - 248  (0.77)
    220 1 - 220  (0.72)
    214 1 - 214  (0.70)
    ac 2 - 158  (0.45)
    82 2 - 104  (0.34)
    6a 2 - d4  (0.28)
    50 2 - a0  (0.21)
    28 4 - a0  (0.21)
    98 1 - 98  (0.20)
    94 1 - 94  (0.19)
    8a 1 - 8a  (0.18)
    2e 3 - 8a  (0.18)
    41 2 - 82  (0.17)
    80 1 - 80  (0.17)
    7c 1 - 7c  (0.16)

我们可以看到排在第一位的是大小为0x9c40 (0n40000)的内存,分配了1次, 第二位的是大小为 0x14 (0n20) 的内存,分配了3ea (0n1002)次.
 回头再看我们的测试程序,怎么样? 是不是感觉很熟悉了。

输入!heap -flt s 0x9c40, 让WinDbg列出所有大小为0x9c40的内存:
0:001> !heap -flt s 0x9c40
    _DPH_HEAP_ROOT @ 1161000
    Freed and decommitted blocks
      DPH_HEAP_BLOCK : VirtAddr VirtSize
    Busy allocations
      DPH_HEAP_BLOCK : UserAddr  UserSize - VirtAddr VirtSize
    _HEAP @ 1300000
    _DPH_HEAP_ROOT @ 1401000
    Freed and decommitted blocks
      DPH_HEAP_BLOCK : VirtAddr VirtSize
    Busy allocations
      DPH_HEAP_BLOCK : UserAddr  UserSize - VirtAddr VirtSize
    _HEAP @ 16b0000
    _DPH_HEAP_ROOT @ 2361000
    Freed and decommitted blocks
      DPH_HEAP_BLOCK : VirtAddr VirtSize
    Busy allocations
      DPH_HEAP_BLOCK : UserAddr  UserSize - VirtAddr VirtSize
    _HEAP @ 1280000
    _DPH_HEAP_ROOT @ 2f01000
    Freed and decommitted blocks
      DPH_HEAP_BLOCK : VirtAddr VirtSize
    Busy allocations
      DPH_HEAP_BLOCK : UserAddr  UserSize - VirtAddr VirtSize
        02f024e0 : 02fc63c0 00009c40 - 02fc6000 0000b000
    _HEAP @ 31d0000

可以看到, WinDbg帮我们找到了一个符合要求的分配, 它的UserAddr是02fc63c0, 该地址实际上就是代码char* pLargeMem = new char[40000]分配的地址, 按照开头的方法, 输入!heap -p -a 02fc63c0 
0:001> !heap -p -a 02fc63c0
    address 02fc63c0 found in
    _DPH_HEAP_ROOT @ 2f01000
    in busy allocation (  DPH_HEAP_BLOCK:         UserAddr         UserSize -         VirtAddr         VirtSize)
                                 2f024e0:          2fc63c0             9c40 -          2fc6000             b000
    5a8c8e89 verifier!AVrfDebugPageHeapAllocate+0x00000229
    77485c4e ntdll!RtlDebugAllocateHeap+0x00000030
    77447e5e ntdll!RtlpAllocateHeap+0x000000c4
    774134df ntdll!RtlAllocateHeap+0x0000023a
    5b06a65d vrfcore!VfCoreRtlAllocateHeap+0x00000016
    5a92f9ea vfbasics!AVrfpRtlAllocateHeap+0x000000e2
    72893db8 MSVCR90!malloc+0x00000079
    72893eb8 MSVCR90!operator new+0x0000001f
    012c101e MemLeakTest!wmain+0x0000001e [f:\test\memleaktest\memleaktest\memleaktest.cpp @ 13]
    77331114 kernel32!BaseThreadInitThunk+0x0000000e
    7741b429 ntdll!__RtlUserThreadStart+0x00000070
    7741b3fc ntdll!_RtlUserThreadStart+0x0000001b

可以看到该堆栈就是我们new char[40000]的堆栈, 用同样的方法, 我们可以分析出上面代码for循环中的1000次内存泄漏。

最后, 总结一下, 通过WinDbg结合AppVerifier, 我们可以详细的跟踪堆中new出来的每一块内存。 很多时候在没有源代码的Release版本中,在程序运行一段时间后,如果我们发现有大内存或是大量同样大小的小内存一直没有释放,  我们就可以用上面的方法进行分析和快速的定位问题。
 
 
分类: WinDbg
标签: WinDbg heap 堆 pageheap 页堆

推荐阅读
  • C++字符字符串处理及字符集编码方案
    本文介绍了C++中字符字符串处理的问题,并详细解释了字符集编码方案,包括UNICODE、Windows apps采用的UTF-16编码、ASCII、SBCS和DBCS编码方案。同时说明了ANSI C标准和Windows中的字符/字符串数据类型实现。文章还提到了在编译时需要定义UNICODE宏以支持unicode编码,否则将使用windows code page编译。最后,给出了相关的头文件和数据类型定义。 ... [详细]
  • 本文介绍了PE文件结构中的导出表的解析方法,包括获取区段头表、遍历查找所在的区段等步骤。通过该方法可以准确地解析PE文件中的导出表信息。 ... [详细]
  • CF:3D City Model(小思维)问题解析和代码实现
    本文通过解析CF:3D City Model问题,介绍了问题的背景和要求,并给出了相应的代码实现。该问题涉及到在一个矩形的网格上建造城市的情景,每个网格单元可以作为建筑的基础,建筑由多个立方体叠加而成。文章详细讲解了问题的解决思路,并给出了相应的代码实现供读者参考。 ... [详细]
  • 本文介绍了深入浅出Linux设备驱动编程的重要性,以及两种加载和删除Linux内核模块的方法。通过一个内核模块的例子,展示了模块的编译和加载过程,并讨论了模块对内核大小的控制。深入理解Linux设备驱动编程对于开发者来说非常重要。 ... [详细]
  • 本文介绍了使用哈夫曼树实现文件压缩和解压的方法。首先对数据结构课程设计中的代码进行了分析,包括使用时间调用、常量定义和统计文件中各个字符时相关的结构体。然后讨论了哈夫曼树的实现原理和算法。最后介绍了文件压缩和解压的具体步骤,包括字符统计、构建哈夫曼树、生成编码表、编码和解码过程。通过实例演示了文件压缩和解压的效果。本文的内容对于理解哈夫曼树的实现原理和应用具有一定的参考价值。 ... [详细]
  • 初识java关于JDK、JRE、JVM 了解一下 ... [详细]
  • 本文介绍了解决Netty拆包粘包问题的一种方法——使用特殊结束符。在通讯过程中,客户端和服务器协商定义一个特殊的分隔符号,只要没有发送分隔符号,就代表一条数据没有结束。文章还提供了服务端的示例代码。 ... [详细]
  • EPICS Archiver Appliance存储waveform记录的尝试及资源需求分析
    本文介绍了EPICS Archiver Appliance存储waveform记录的尝试过程,并分析了其所需的资源容量。通过解决错误提示和调整内存大小,成功存储了波形数据。然后,讨论了储存环逐束团信号的意义,以及通过记录多圈的束团信号进行参数分析的可能性。波形数据的存储需求巨大,每天需要近250G,一年需要90T。然而,储存环逐束团信号具有重要意义,可以揭示出每个束团的纵向振荡频率和模式。 ... [详细]
  • http:my.oschina.netleejun2005blog136820刚看到群里又有同学在说HTTP协议下的Get请求参数长度是有大小限制的,最大不能超过XX ... [详细]
  • 《数据结构》学习笔记3——串匹配算法性能评估
    本文主要讨论串匹配算法的性能评估,包括模式匹配、字符种类数量、算法复杂度等内容。通过借助C++中的头文件和库,可以实现对串的匹配操作。其中蛮力算法的复杂度为O(m*n),通过随机取出长度为m的子串作为模式P,在文本T中进行匹配,统计平均复杂度。对于成功和失败的匹配分别进行测试,分析其平均复杂度。详情请参考相关学习资源。 ... [详细]
  • 高质量SQL书写的30条建议
    本文提供了30条关于优化SQL的建议,包括避免使用select *,使用具体字段,以及使用limit 1等。这些建议是基于实际开发经验总结出来的,旨在帮助读者优化SQL查询。 ... [详细]
  • Redis底层数据结构之压缩列表的介绍及实现原理
    本文介绍了Redis底层数据结构之压缩列表的概念、实现原理以及使用场景。压缩列表是Redis为了节约内存而开发的一种顺序数据结构,由特殊编码的连续内存块组成。文章详细解释了压缩列表的构成和各个属性的含义,以及如何通过指针来计算表尾节点的地址。压缩列表适用于列表键和哈希键中只包含少量小整数值和短字符串的情况。通过使用压缩列表,可以有效减少内存占用,提升Redis的性能。 ... [详细]
  • 本文介绍了使用cacti监控mssql 2005运行资源情况的操作步骤,包括安装必要的工具和驱动,测试mssql的连接,配置监控脚本等。通过php连接mssql来获取SQL 2005性能计算器的值,实现对mssql的监控。详细的操作步骤和代码请参考附件。 ... [详细]
  • EPPlus绘制刻度线的方法及示例代码
    本文介绍了使用EPPlus绘制刻度线的方法,并提供了示例代码。通过ExcelPackage类和List对象,可以实现在Excel中绘制刻度线的功能。具体的方法和示例代码在文章中进行了详细的介绍和演示。 ... [详细]
  • 全面介绍Windows内存管理机制及C++内存分配实例(四):内存映射文件
    本文旨在全面介绍Windows内存管理机制及C++内存分配实例中的内存映射文件。通过对内存映射文件的使用场合和与虚拟内存的区别进行解析,帮助读者更好地理解操作系统的内存管理机制。同时,本文还提供了相关章节的链接,方便读者深入学习Windows内存管理及C++内存分配实例的其他内容。 ... [详细]
author-avatar
有一颗爱心和寂寞的心
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有