热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

【计算机视觉】:(2)局部图像描述子

局部图像描述子1.Harris角点检测1.1相关概念1.2.Harris角点检测基本思想1.3.数学表达1.4.Harris角点检测实现1.5.Harris角点匹配实现2.SIFT


局部图像描述子

  • 1. Harris角点检测
    • 1.1 相关概念
    • 1.2. Harris角点检测基本思想
    • 1.3. 数学表达
    • 1.4. Harris角点检测实现
    • 1.5. Harris角点匹配实现
  • 2. SIFT特征匹配算法
    • 2.1 简介
    • 2.2. 实现步骤
    • 2.3. 相关概念
    • 2.4. 代码实现


1. Harris角点检测


1.1 相关概念

角点:
• 局部窗口沿各方向移动,均产生明显变化的点
• 图像局部曲率突变的点
不同类型的角点:
在这里插入图片描述


1.2. Harris角点检测基本思想

• 从图像局部的小窗口观察图像特征
• 角点定义窗口向任意方向的移动都导致图像灰度的明显变化
在这里插入图片描述
在这里插入图片描述


1.3. 数学表达

Harris角点检测算法是一个极其简单的角点检测算法,其主要思想是,如果像素周围显示存在多于一个方向的边,我们认为该点为兴趣点,又称为角点。

我们把图像域中点x上的对称半正定矩阵Ml=MI(x)M_l=M_I(x)Ml=MI(x)定义为:
Ml=▽I▽IT=[IxIy][IxIy]=[Ix2IxIyIxIyIy2]M_l=\bigtriangledown I \bigtriangledown I^T=\begin{bmatrix} I_x\\ I_y \end{bmatrix}\begin{bmatrix} I_x &I_y \end{bmatrix}=\begin{bmatrix} I_x^2 & I_xI_y\\ I_xI_y& I_y^2 \end{bmatrix}Ml=IIT=[IxIy][IxIy]=[Ix2IxIyIxIyIy2]
对于图像的每一个像素,我们可以计算出该矩阵,再将其乘上权重矩阵W,我们可以得到卷积。这样计算出的矩阵又称作Harris矩阵。


1.4. Harris角点检测实现

代码:

from pylab import *
from PIL import Image
from PCV.localdescriptors import harris"""
Example of detecting Harris corner points (Figure 2-1 in the book).
"""
# 读入图像
im = array(Image.open('1.jpg').convert('L'))# 检测harris角点
harrisim = harris.compute_harris_response(im)# Harris响应函数
harrisim1 = 255 - harrisimfigure()
gray()#画出Harris响应图
subplot(141)
imshow(harrisim1)
print(harrisim1.shape)
axis('off')
axis('equal')threshold = [0.01, 0.05, 0.1]
for i, thres in enumerate(threshold):filtered_coords = harris.get_harris_points(harrisim, 6, thres)subplot(1, 4, i+2)imshow(im)print(im.shape)plot([p[1] for p in filtered_coords], [p[0] for p in filtered_coords], '*')axis('off')#原书采用的PCV中PCV harris模块
#harris.plot_harris_points(im, filtered_coords)# plot only 200 strongest
# harris.plot_harris_points(im, filtered_coords[:200])show()

原图:
在这里插入图片描述

运行结果:
在这里插入图片描述
原图:
在这里插入图片描述
运行结果:
在这里插入图片描述


1.5. Harris角点匹配实现

代码如下:

#Harris角点匹配
from pylab import *
from PIL import Imagefrom PCV.localdescriptors import harris
from PCV.tools.imtools import imresize"""
This is the Harris point matching example in Figure 2-2.
"""
# Figure 2-2上面的图
#im1 = array(Image.open("../data/crans_1_small.jpg").convert("L"))
#im2= array(Image.open("../data/crans_2_small.jpg").convert("L"))# Figure 2-2下面的图
im1 = array(Image.open('3.jpg').convert("L"))
im2 = array(Image.open('4.jpg').convert("L"))# resize加快匹配速度
im1 = imresize(im1, (im1.shape[1]//2, im1.shape[0]//2))
im2 = imresize(im2, (im2.shape[1]//2, im2.shape[0]//2))wid = 5
harrisim = harris.compute_harris_response(im1, 5)
filtered_coords1 = harris.get_harris_points(harrisim, wid+1)
d1 = harris.get_descriptors(im1, filtered_coords1, wid)harrisim = harris.compute_harris_response(im2, 5)
filtered_coords2 = harris.get_harris_points(harrisim, wid+1)
d2 = harris.get_descriptors(im2, filtered_coords2, wid)print('starting matching')
matches = harris.match_twosided(d1, d2)figure()
gray()
harris.plot_matches(im1, im2, filtered_coords1, filtered_coords2, matches)
show()

运行结果:
在这里插入图片描述
在这里插入图片描述


2. SIFT特征匹配算法


2.1 简介

SIFT(Scale Invariant Feature Transform),尺度不变特征变换。 关于物体匹配的核心是将目标在不同环境和时间下所成的像相对应。SIFT不同于传统的匹配算法将边缘和角点作为判别依据,而是将图像映射为一个局部特征向量集,解决了图像中物体缩放、移动、旋转后的匹配问题。

SIFT算法可以解决的问题:
• 目标的旋转、缩放、平移(RST)
• 图像仿射/投影变换(视点viewpoint)
• 弱光照影响(illumination)
• 部分目标遮挡(occlusion)
• 杂物场景(clutter)
• 噪声


2.2. 实现步骤

简介:实质可以归为在不同尺度空间上查找特征点(关键点)的问题。
SIFT算法实现特征匹配主要有三个流程:
1、提取关键点;
2、对关键点附加详细的信息(局部特征),即描述符;
3、通过特征点(附带上特征向量的关键点)的两两比较找出相互匹配的若干对特征点,建立景物间的对应关系。
在这里插入图片描述


2.3. 相关概念

(1)哪些点是SIFT中要查找的关键点(特征点)?
这些点是一些十分突出的点,不会因光照、尺度、旋转等因素的改变而消失,比如角点、边缘点、暗区域的亮点以及亮区域的暗点。假定两幅图像中有相同的景物,那么使用某种算法分别提取各自的特征点,这些点之间会有相互对应的匹配关系。

由此我们可以看出SIFT特征点希望选出具有下述不变性的点:尺度、方向、位移、光照。

(2)什么是尺度空间?
尺度空间理论最早于1962年提出,其主要思想是通过对原始图像进行尺度变换,获得图像多尺度下的空间表示。从而实现边缘、角点检测和不同分辨率上的特征提取,以满足特征点的尺度不变性。
尺度空间中各尺度图像的模糊程度逐渐变大,能够模拟人在距离目标由近到远时目标在视网膜上的形成过程。
尺度越大图像越模糊。
在这里插入图片描述
在这里插入图片描述
(3)高斯模糊
高斯模糊是在Adobe Photoshop等图像处理软件中广泛使用的处理效果,通常用它来减小图像噪声以及降低细节层次。这种模糊技术生成的图像的视觉效果是好像经过一个半透明的屏幕观察图像。
在这里插入图片描述
(4)高斯金字塔
高斯金字塔的构建过程可分为两步:
(1)对图像做高斯平滑;
(2)对图像做降采样。

为了让尺度体现其连续性,在简单下采样的基础上加上了高斯滤波。一幅图像可以产生几组(octave)图像,一组图像包括几层(interval)图像。
在这里插入图片描述
在这里插入图片描述
(5)关键点检测——DOG
在这里插入图片描述
DoG高斯差分金字塔,对应DOG算子,需构建DOG金字塔。
可以通过高斯差分图像看出图像上的像素值变化情况。(如果没有变化,也就没有特征。特征必须是变化尽可能多的点。)DOG图像描绘的是目标的轮廓。
在这里插入图片描述
(6)DOG局部极值检测
DOG的局部极值点
特征点是由DOG空间的局部极值点组成的。为了寻找DoG函数的极值点,每一个像素点要和它所有的相邻点比较,看其是否比它的图像域和尺度域的相邻点大或者小。
在这里插入图片描述
中间的检测点和它同尺度的8个相邻点和上下相邻尺度对应的9×2个点共26个点比较,以确保在尺度空间和二维图像空间都检测到极值点。

去除边缘响应
由于DoG函数在图像边缘有较强的边缘响应,因此需要排除边缘响应。
DoG函数的峰值点在边缘方向有较大的主曲率,而在垂直边缘的方向有较小的主曲率。主曲率可以通过计算在该点位置尺度的2×2的Hessian矩阵得到,导数由采样点相邻差来估计:
在这里插入图片描述
DxxD_{xx}Dxx表示DOG金字塔中某一尺度的图像x方向求导两次
在这里插入图片描述
在这里插入图片描述
方向直方图的生成
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
关键点匹配
分别对模板图(参考图,reference image)和实时图(观测图,observation image)建立关键点描述子集合。目标的识别是通过两点集内关键点描述子的比对来完成。具有128维的关键点描述子的相似性度量采用欧式距离。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
关键点的匹配可以采用穷举法来完成,但是这样耗费的时间太多,一般都采用kd树的数据结构来完成搜索。搜索的内容是以目标图像的关键点为基准,搜索与目标图像的特征点最邻近的原图像特征点和次邻近的原图像特征点。
Kd树是一个平衡二叉树。
在这里插入图片描述


2.4. 代码实现

(1)检测感兴趣点
代码如下:

#SIFT检测感兴趣点
from PIL import Image
from pylab import *
from PCV.localdescriptors import sift
from PCV.localdescriptors import harris# 添加中文字体支持
from matplotlib.font_manager import FontProperties
font = FontProperties(fname=r"c:\windows\fonts\SimSun.ttc", size=14)imname = '3.jpg'
im = array(Image.open(imname).convert('L'))
sift.process_image(imname, 'empire.sift')
l1, d1 = sift.read_features_from_file('empire.sift')figure()
gray()
subplot(131)
sift.plot_features(im, l1, circle=False)
title(u'SIFT特征',fontproperties=font)
subplot(132)
sift.plot_features(im, l1, circle=True)
title(u'用圆圈表示SIFT特征尺度',fontproperties=font)# 检测harris角点
harrisim = harris.compute_harris_response(im)subplot(133)
filtered_coords = harris.get_harris_points(harrisim, 6, 0.1)
imshow(im)
plot([p[1] for p in filtered_coords], [p[0] for p in filtered_coords], '*')
axis('off')
title(u'Harris角点',fontproperties=font)show()

在这里插入图片描述
(2)描述子匹配

#描述子匹配
from PIL import Image
from pylab import *
import sys
from PCV.localdescriptors import siftim1f = '7.jpg'
im2f = '8.jpg'im1 = array(Image.open(im1f))
im2 = array(Image.open(im2f))#sift.process_image(im1f, 'out_sift_1.txt')
l1, d1 = sift.read_features_from_file('out_sift_1.txt')
figure()
gray()
subplot(121)
sift.plot_features(im1, l1, circle=False)#sift.process_image(im2f, 'out_sift_2.txt')
l2, d2 = sift.read_features_from_file('out_sift_2.txt')
subplot(122)
sift.plot_features(im2, l2, circle=False)#matches = sift.match(d1, d2)
matches = sift.match_twosided(d1, d2)
print('{} matches'.format(len(matches.nonzero()[0])))figure()
gray()
sift.plot_matches(im1, im2, l1, l2, matches, show_below=True)
show()

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述


推荐阅读
  • Linux重启网络命令实例及关机和重启示例教程
    本文介绍了Linux系统中重启网络命令的实例,以及使用不同方式关机和重启系统的示例教程。包括使用图形界面和控制台访问系统的方法,以及使用shutdown命令进行系统关机和重启的句法和用法。 ... [详细]
  • sklearn数据集库中的常用数据集类型介绍
    本文介绍了sklearn数据集库中常用的数据集类型,包括玩具数据集和样本生成器。其中详细介绍了波士顿房价数据集,包含了波士顿506处房屋的13种不同特征以及房屋价格,适用于回归任务。 ... [详细]
  • Python正则表达式学习记录及常用方法
    本文记录了学习Python正则表达式的过程,介绍了re模块的常用方法re.search,并解释了rawstring的作用。正则表达式是一种方便检查字符串匹配模式的工具,通过本文的学习可以掌握Python中使用正则表达式的基本方法。 ... [详细]
  • 本文由编程笔记#小编为大家整理,主要介绍了logistic回归(线性和非线性)相关的知识,包括线性logistic回归的代码和数据集的分布情况。希望对你有一定的参考价值。 ... [详细]
  • 生成式对抗网络模型综述摘要生成式对抗网络模型(GAN)是基于深度学习的一种强大的生成模型,可以应用于计算机视觉、自然语言处理、半监督学习等重要领域。生成式对抗网络 ... [详细]
  • 在Android开发中,使用Picasso库可以实现对网络图片的等比例缩放。本文介绍了使用Picasso库进行图片缩放的方法,并提供了具体的代码实现。通过获取图片的宽高,计算目标宽度和高度,并创建新图实现等比例缩放。 ... [详细]
  • 向QTextEdit拖放文件的方法及实现步骤
    本文介绍了在使用QTextEdit时如何实现拖放文件的功能,包括相关的方法和实现步骤。通过重写dragEnterEvent和dropEvent函数,并结合QMimeData和QUrl等类,可以轻松实现向QTextEdit拖放文件的功能。详细的代码实现和说明可以参考本文提供的示例代码。 ... [详细]
  • CSS3选择器的使用方法详解,提高Web开发效率和精准度
    本文详细介绍了CSS3新增的选择器方法,包括属性选择器的使用。通过CSS3选择器,可以提高Web开发的效率和精准度,使得查找元素更加方便和快捷。同时,本文还对属性选择器的各种用法进行了详细解释,并给出了相应的代码示例。通过学习本文,读者可以更好地掌握CSS3选择器的使用方法,提升自己的Web开发能力。 ... [详细]
  • android listview OnItemClickListener失效原因
    最近在做listview时发现OnItemClickListener失效的问题,经过查找发现是因为button的原因。不仅listitem中存在button会影响OnItemClickListener事件的失效,还会导致单击后listview每个item的背景改变,使得item中的所有有关焦点的事件都失效。本文给出了一个范例来说明这种情况,并提供了解决方法。 ... [详细]
  • 本文讨论了一个关于cuowu类的问题,作者在使用cuowu类时遇到了错误提示和使用AdjustmentListener的问题。文章提供了16个解决方案,并给出了两个可能导致错误的原因。 ... [详细]
  • 本文介绍了在处理不规则数据时如何使用Python自动提取文本中的时间日期,包括使用dateutil.parser模块统一日期字符串格式和使用datefinder模块提取日期。同时,还介绍了一段使用正则表达式的代码,可以支持中文日期和一些特殊的时间识别,例如'2012年12月12日'、'3小时前'、'在2012/12/13哈哈'等。 ... [详细]
  • Python爬虫中使用正则表达式的方法和注意事项
    本文介绍了在Python爬虫中使用正则表达式的方法和注意事项。首先解释了爬虫的四个主要步骤,并强调了正则表达式在数据处理中的重要性。然后详细介绍了正则表达式的概念和用法,包括检索、替换和过滤文本的功能。同时提到了re模块是Python内置的用于处理正则表达式的模块,并给出了使用正则表达式时需要注意的特殊字符转义和原始字符串的用法。通过本文的学习,读者可以掌握在Python爬虫中使用正则表达式的技巧和方法。 ... [详细]
  • 本文介绍了设计师伊振华受邀参与沈阳市智慧城市运行管理中心项目的整体设计,并以数字赋能和创新驱动高质量发展的理念,建设了集成、智慧、高效的一体化城市综合管理平台,促进了城市的数字化转型。该中心被称为当代城市的智能心脏,为沈阳市的智慧城市建设做出了重要贡献。 ... [详细]
  • 开发笔记:加密&json&StringIO模块&BytesIO模块
    篇首语:本文由编程笔记#小编为大家整理,主要介绍了加密&json&StringIO模块&BytesIO模块相关的知识,希望对你有一定的参考价值。一、加密加密 ... [详细]
  • Java容器中的compareto方法排序原理解析
    本文从源码解析Java容器中的compareto方法的排序原理,讲解了在使用数组存储数据时的限制以及存储效率的问题。同时提到了Redis的五大数据结构和list、set等知识点,回忆了作者大学时代的Java学习经历。文章以作者做的思维导图作为目录,展示了整个讲解过程。 ... [详细]
author-avatar
他们叫我红豆
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有