热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

机器学习之贝叶斯垃圾邮件分类代码

本文介绍了贝叶斯垃圾邮件分类的机器学习代码,代码来源于https://www.cnblogs.com/huangyc/p/10327209.html,并对代码进行了简介。朴素贝叶斯分类器训练函数包括求p(Ci)和基于词汇表的p(w|Ci)。

代码来源于:https://www.cnblogs.com/huangyc/p/10327209.html  ,本人只是简介学习

1、 贝叶斯.py

import numpy as np
from word_utils import *



class NaiveBayesBase(object):

    def __init__(self):
        pass


    def fit(self, trainMatrix, trainCategory):
        '''
        朴素贝叶斯分类器训练函数,求:p(Ci),基于词汇表的p(w|Ci)
        Args:
            trainMatrix : 训练矩阵,即向量化表示后的文档(词条集合)
            trainCategory : 文档中每个词条的列表标注
        Return:
            p0Vect : 属于0类别的概率向量(p(w1|C0),p(w2|C0),...,p(wn|C0))
            p1Vect : 属于1类别的概率向量(p(w1|C1),p(w2|C1),...,p(wn|C1))
            pAbusive : 属于1类别文档的概率
        '''
        numTrainDocs = len(trainMatrix)
        # 长度为词汇表长度
        numWords = len(trainMatrix[0])
        # p(ci)
        self.pAbusive = sum(trainCategory) / float(numTrainDocs)
        # 由于后期要计算p(w|Ci)=p(w1|Ci)*p(w2|Ci)*...*p(wn|Ci),若wj未出现,则p(wj|Ci)=0,因此p(w|Ci)=0,这样显然是不对的
        # 故在初始化时,将所有词的出现数初始化为1,分母即出现词条总数初始化为2
        p0Num = np.ones(numWords)
        p1Num = np.ones(numWords)
        p0Denom = 2.0
        p1Denom = 2.0
        for i in range(numTrainDocs):
            if trainCategory[i] == 1:
                p1Num += trainMatrix[i]
                p1Denom += sum(trainMatrix[i])
            else:
                p0Num += trainMatrix[i]
                p0Denom += sum(trainMatrix[i])
        # p(wi | c1)
        # 为了避免下溢出(当所有的p都很小时,再相乘会得到0.0,使用log则会避免得到0.0)
        self.p1Vect = np.log(p1Num / p1Denom)
        # p(wi | c2)
        self.p0Vect = np.log(p0Num / p0Denom)
        return self


    def predict(self, testX):
        '''
        朴素贝叶斯分类器
        Args:
            testX : 待分类的文档向量(已转换成array)
            p0Vect : p(w|C0)
            p1Vect : p(w|C1)
            pAbusive : p(C1)
        Return:
            1 : 为侮辱性文档 (基于当前文档的p(w|C1)*p(C1)=log(基于当前文档的p(w|C1))+log(p(C1)))
            0 : 非侮辱性文档 (基于当前文档的p(w|C0)*p(C0)=log(基于当前文档的p(w|C0))+log(p(C0)))
        '''

        p1 = np.sum(testX * self.p1Vect) + np.log(self.pAbusive)
        p0 = np.sum(testX * self.p0Vect) + np.log(1 - self.pAbusive)
        if p1 > p0:
            return 1
        else:
            return 0

def loadDataSet():
    '''数据加载函数。这里是一个小例子'''
    postingList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
                   ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                   ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                   ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                   ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                   ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0, 1, 0, 1, 0, 1]  # 1代表侮辱性文字,0代表正常言论,代表上面6个样本的类别
    return postingList, classVec


def checkNB():
    '''测试'''
    listPosts, listClasses = loadDataSet()
    myVocabList = createVocabList(listPosts)
    trainMat = []
    for postDoc in listPosts:
        trainMat.append(setOfWord2Vec(myVocabList, postDoc))

    nb = NaiveBayesBase()
    nb.fit(np.array(trainMat), np.array(listClasses))

    testEntry1 = ['love', 'my', 'dalmation']
    thisDoc = np.array(setOfWord2Vec(myVocabList, testEntry1))
    print(testEntry1, 'classified as:', nb.predict(thisDoc))

    testEntry2 = ['stupid', 'garbage']
    thisDoc2 = np.array(setOfWord2Vec(myVocabList, testEntry2))
    print(testEntry2, 'classified as:', nb.predict(thisDoc2))


if __name__ == "__main__":
    checkNB()
View Code
推荐阅读
  • 火星商店问题:线段树分治与持久化Trie树的应用
    本题涉及编号为1至n的火星商店,每个商店有一个永久商品价值v。操作包括每天在指定商店增加一个新商品,以及查询某段时间内某些商店中所有商品(含永久商品)与给定密码值的最大异或结果。通过线段树分治和持久化Trie树来高效解决此问题。 ... [详细]
  • Java 中的 BigDecimal pow()方法,示例 ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • 本文介绍了Java并发库中的阻塞队列(BlockingQueue)及其典型应用场景。通过具体实例,展示了如何利用LinkedBlockingQueue实现线程间高效、安全的数据传递,并结合线程池和原子类优化性能。 ... [详细]
  • DNN Community 和 Professional 版本的主要差异
    本文详细解析了 DotNetNuke (DNN) 的两种主要版本:Community 和 Professional。通过对比两者的功能和附加组件,帮助用户选择最适合其需求的版本。 ... [详细]
  • Splay Tree 区间操作优化
    本文详细介绍了使用Splay Tree进行区间操作的实现方法,包括插入、删除、修改、翻转和求和等操作。通过这些操作,可以高效地处理动态序列问题,并且代码实现具有一定的挑战性,有助于编程能力的提升。 ... [详细]
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • 本题通过将每个矩形视为一个节点,根据其相对位置构建拓扑图,并利用深度优先搜索(DFS)或状态压缩动态规划(DP)求解最小涂色次数。本文详细解析了该问题的建模思路与算法实现。 ... [详细]
  • 本题探讨了一种字符串变换方法,旨在判断两个给定的字符串是否可以通过特定的字母替换和位置交换操作相互转换。核心在于找到这些变换中的不变量,从而确定转换的可能性。 ... [详细]
  • 本文介绍如何利用动态规划算法解决经典的0-1背包问题。通过具体实例和代码实现,详细解释了在给定容量的背包中选择若干物品以最大化总价值的过程。 ... [详细]
  • 数据管理权威指南:《DAMA-DMBOK2 数据管理知识体系》
    本书提供了全面的数据管理职能、术语和最佳实践方法的标准行业解释,构建了数据管理的总体框架,为数据管理的发展奠定了坚实的理论基础。适合各类数据管理专业人士和相关领域的从业人员。 ... [详细]
  • 深入理解 SQL 视图、存储过程与事务
    本文详细介绍了SQL中的视图、存储过程和事务的概念及应用。视图为用户提供了一种灵活的数据查询方式,存储过程则封装了复杂的SQL逻辑,而事务确保了数据库操作的完整性和一致性。 ... [详细]
  • 使用 Azure Service Principal 和 Microsoft Graph API 获取 AAD 用户列表
    本文介绍了一段通用代码示例,该代码不仅能够操作 Azure Active Directory (AAD),还可以通过 Azure Service Principal 的授权访问和管理 Azure 订阅资源。Azure 的架构可以分为两个层级:AAD 和 Subscription。 ... [详细]
  • 前言--页数多了以后需要指定到某一页(只做了功能,样式没有细调)html ... [详细]
  • 本文深入探讨了 Java 中的 Serializable 接口,解释了其实现机制、用途及注意事项,帮助开发者更好地理解和使用序列化功能。 ... [详细]
author-avatar
天秤aaaaaaa_150
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有