热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

机器学习算法:SVM(支持向量机)

SVM算法(SupportVectorMachine,支持向量机)的核心思想有2点:1、如果数据线性可分,那么基于最大间隔的方式来确定超平面,以确保全局最优,

SVM算法(Support Vector Machine,支持向量机)的核心思想有2点:1、如果数据线性可分,那么基于最大间隔的方式来确定超平面,以确保全局最优,使得分类器尽可能健壮;2、如果数据线性不可分,通过核函数将低维样本转化为高维样本使其线性可分。注意和AdaBoost类似,SVM只能解决二分类问题。


SVM的算法在数学上实在是太复杂了,没研究明白。建议还是直接使用现成的第三方组件吧,比如libsvm的C#版本,推荐这个:http://www.matthewajohnson.org/software/svm.html。


虽然没研究明白,不过这几天照着Python版本的代码试着用C#改写了一下,算是研究SVM过程中唯一的收获吧。此版本基于SMO(序列最小优化)算法求解,核函数使用的是比较常用的径向基函数(RBF)。别问我为什么没有注释,我只是从Python移植过来的,我也没看懂,等我看懂了再来补注释吧。

using System;
using System.Collections.Generic;
using System.Linq;

namespace MachineLearning
{
    /// 
    /// 支持向量机(SMO算法,RBF核)
    /// 
    public class SVM
    {
        private Random m_Rand;
        private double[][] m_Kernel;
        private double[] m_Alpha;
        private double m_C = 1.0;
        private double m_B = 0.0;
        private double m_Toler = 0.0;
        private double[][] m_Cache;
        private double[][] m_Data;
        private double m_Reach;
        private int[] m_Label;
        private int m_Count;
        private int m_Dimension;
        
        public SVM()
        {
            m_Rand = new Random();
        }
        
        /// 
        /// 训练
        /// 
        /// 
        /// 
        /// 
        /// 
        /// 
        public void Train(List> trainingSet, double C, double toler, double reach, int iterateCount = 10)
        {
            //初始化
            m_Count = trainingSet.Count;
            m_Dimension = trainingSet[0].Dimension;
            m_Toler = toler;
            m_C = C;
            m_Reach = reach;
            this.Init(trainingSet);
            this.InitKernel();
            
            int iter = 0;
            int alphaChanged = 0;
            bool entireSet = true;
            while(iter < iterateCount && (alphaChanged > 0 || entireSet))
            {
                alphaChanged = 0;
                if(entireSet)
                {
                    for(int i = 0;i < m_Count;++i)
                        alphaChanged += InnerL(i);
                    iter++;
                }
                else
                {
                    for(int i = 0;i < m_Count;++i)
                    {
                        if(m_Alpha[i] > 0 && m_Alpha[i] < m_C)
                            alphaChanged += InnerL(i);
                    }
                    iter += 1;
                }
                
                if(entireSet)
                    entireSet = false;
                else if(alphaChanged == 0)
                    entireSet = true;
            }
        }
        
        /// 
        /// 分类
        /// 
        /// 
        /// 
        public int Classify(DataVector vector)
        {
            double predict = 0.0;
            
            int svCnt = m_Alpha.Count(a => a > 0);
            var supportVectors = new double[svCnt][];
            var supportLabels = new int[svCnt];
            var supportAlphas = new double[svCnt];
            int index = 0;
            for(int i = 0;i < m_Count;++i)
            {
                if(m_Alpha[i] > 0)
                {
                    supportVectors[index] = m_Data[i];
                    supportLabels[index] = m_Label[i];
                    supportAlphas[index] = m_Alpha[i];
                    index++;
                }
            }
            
            var kernelEval = KernelTrans(supportVectors, vector.Data);
            for(int i = 0;i < svCnt;++i)
                predict += kernelEval[i] * supportAlphas[i] * supportLabels[i];
            predict += m_B;
            
            return Math.Sign(predict);
        }
        
        /// 
        /// 将原始数据转化成方便使用的形式
        /// 
        /// 
        private void Init(List> trainingSet)
        {
            m_Data = new double[m_Count][];
            m_Label = new int[m_Count];
            m_Alpha = new double[m_Count];
            m_Cache = new double[m_Count][];
            
            for(int i = 0;i < m_Count;++i)
            {
                m_Label[i] = trainingSet[i].Label;
                m_Alpha[i] = 0.0;
                m_Cache[i] = new double[2];
                m_Cache[i][0] = 0.0;
                m_Cache[i][1] = 0.0;
                m_Data[i] = new double[m_Dimension];
                for(int j = 0;j < m_Dimension;++j)
                    m_Data[i][j] = trainingSet[i].Data[j];
            }
        }
        
        /// 
        /// 初始化RBF核
        /// 
        private void InitKernel()
        {
            m_Kernel = new double[m_Count][];
            
            for(int i = 0;i < m_Count;++i)
            {
                m_Kernel[i] = new double[m_Count];
                var kernels = KernelTrans(m_Data, m_Data[i]);
                for(int k = 0;k < kernels.Length;++k)
                    m_Kernel[i][k] = kernels[k];
            }
        }
        
        private double[] KernelTrans(double[][] X, double[] A)
        {
            var kernel = new double[X.Length];
            
            for(int i = 0;i < X.Length;++i)
            {
                double delta = 0.0;
                for(int k = 0;k < X[0].Length;++k)
                    delta += Math.Pow(X[i][k] - A[k], 2);
                kernel[i] = Math.Exp(delta * -1.0 / Math.Pow(m_Reach, 2));
            }
            
            return kernel;
        }
        
        private double E(int k)
        {
            double x = 0.0;
            for(int i = 0;i < m_Count;++i)
                x += m_Alpha[i] * m_Label[i] * m_Kernel[i][k];
            x += m_B;
            
            return x - m_Label[k];
        }
        
        private void UpdateE(int k)
        {
            double Ek = E(k);
            m_Cache[k][0] = 1.0;
            m_Cache[k][1] = Ek;
        }
        
        private int InnerL(int i)
        {
            double Ei = E(i);
            
            if((m_Label[i] * Ei < -m_Toler && m_Alpha[i] < m_C) || (m_Label[i] * Ei > m_Toler && m_Alpha[i] > 0))
            {
                double Ej = 0.0;
                int j = SelectJ(i, Ei, out Ej);
                double oldAi = m_Alpha[i];
                double oldAj = m_Alpha[j];
                
                double H, L;
                if(m_Label[i] != m_Label[j])
                {
                    L = Math.Max(0, m_Alpha[j] - m_Alpha[i]);
                    H = Math.Min(m_C, m_C + m_Alpha[j] - m_Alpha[i]);
                }
                else
                {
                    L = Math.Max(0, m_Alpha[j] + m_Alpha[i] - m_C);
                    H = Math.Min(m_C, m_Alpha[j] + m_Alpha[i]);
                }
                
                if(L == H)
                    return 0;
                    
                double eta = 2.0 * m_Kernel[i][j] - m_Kernel[i][i] - m_Kernel[j][j];
                if(eta >= 0)
                    return 0;
                    
                m_Alpha[j] -= m_Label[j] * (Ei - Ej) / eta;
                m_Alpha[j] = ClipAlpha(m_Alpha[j], H, L);
                UpdateE(j);
                
                if(Math.Abs(m_Alpha[j] - oldAj) < 0.00001)
                    return 0;
                    
                m_Alpha[i] += m_Label[j] * m_Label[i] * (oldAj - m_Alpha[j]);
                UpdateE(i);
                
                double b1 = m_B - Ei - m_Label[i] * (m_Alpha[i] - oldAi) * m_Kernel[i][i] - m_Label[j] * (m_Alpha[j] - oldAj) * m_Kernel[i][j];
                double b2 = m_B - Ej - m_Label[i] * (m_Alpha[i] - oldAi) * m_Kernel[i][j] - m_Label[j] * (m_Alpha[j] - oldAj) * m_Kernel[j][j];
                
                if(m_Alpha[i] > 0 && m_Alpha[i] < m_C)
                    m_B = b1;
                else if(m_Alpha[j] > 0 && m_Alpha[j] < m_C)
                    m_B = b2;
                else
                    m_B = (b1 + b2) / 2.0;
                    
                return 1;
            }
            
            return 0;
        }
        
        private int SelectJ(int i, double Ei, out double Ej)
        {
            Ej = 0.0;
            
            int j = 0;
            int maxK = -1;
            double maxDeltaE = 0.0;
            
            m_Cache[i][0] = 1;
            m_Cache[i][1] = Ei;
            
            for(int k = 0;k < m_Count;++k)
            {
                if(k == i || m_Cache[k][0] == 0)
                    continue;
                    
                double Ek = E(k);
                double deltaE = Math.Abs(Ei - Ek);
                if(deltaE > maxDeltaE)
                {
                    maxK = k;
                    maxDeltaE = deltaE;
                    Ej = Ek;
                }
            }
            
            if(maxK >= 0)
            {
                j = maxK;
            }
            else
            {
                j = RandomSelect(i);
            }
            
            return j;
        }
        
        private int RandomSelect(int i)
        {
            int j = 0;
            do 
            {
                j = m_Rand.Next(0, m_Count);
            }
            while(j == i);
            
            return j;
        }
        
        private double ClipAlpha(double alpha, double H, double L)
        {
            return alpha > H ? H : (alpha < L ? L : alpha);
        }
    }
}


最后上测试,还是使用上次的breast-cancer-wisconsin.txt做测试,之前用kNN和AdaBoost测试的错误率分别是2.02%和1.01%,这回用SVM对比一下。上测试代码:


public void TestSvm()
{
    var trainingSet = new List>();
    var testSet = new List>();
    
    //读取数据
    var file = new StreamReader("breast-cancer-wisconsin.txt", Encoding.Default);
    for(int i = 0;i < 699;++i)
    {
        string line = file.ReadLine();
        var parts = line.Split(&#39;,&#39;);
        var p = new DataVector(9);
        for(int j = 0;j < p.Dimension;++j)
        {
            if(parts[j + 1] == "?")
                parts[j + 1] = "0";
            p.Data[j] = Convert.ToDouble(parts[j + 1]);
        }
        p.Label = Convert.ToInt32(parts[10]) == 2 ? 1 : -1;
        
        //和上次一样,600个做训练,99个做测试
        if(i < 600)
            trainingSet.Add(p);
        else
            testSet.Add(p);
    }
    file.Close();
    
    //检验
    var svm = new SVM();
    svm.Train(trainingSet, 1, 0.01, 3.0, 10);
    int error = 0;
    foreach(var p in testSet)
    {
        var label = boost.Classify(p);
        if(label != p.Label)
            error++;
    }
    
    Console.WriteLine("Error = {0}/{1}, {2}%", error, testSet.Count, (error * 100.0 / testSet.Count));
}


最终结果是99个测试样本猜错1个,错误率1.01%,和AdaBoost相当。


Train时使用不同的参数,错误率会变化,很可惜的是参数的选择往往没有固定的方法,需要在一定范围内尝试以得到最小错误率。



另外对于为什么核函数可以处理线性不可分数据,网上有2张图很能说明问题,转载一下:

以下数据明显是线性不可分的,在二维空间下找不到一条直线能将数据分开:

机器学习算法:SVM(支持向量机)


但在在二维空间下的线性不可分,到了三维空间,是可以找到一个平面来分隔数据的:

机器学习算法:SVM(支持向量机)




推荐阅读
  • 本文将详细探讨 Java 中提供的不可变集合(如 `Collections.unmodifiableXXX`)和同步集合(如 `Collections.synchronizedXXX`)的实现原理及使用方法,帮助开发者更好地理解和应用这些工具。 ... [详细]
  • 深入解析ESFramework中的AgileTcp组件
    本文详细介绍了ESFramework框架中AgileTcp组件的设计与实现。AgileTcp是ESFramework提供的ITcp接口的高效实现,旨在优化TCP通信的性能和结构清晰度。 ... [详细]
  • 本文将继续探讨前端开发中常见的算法问题,重点介绍如何将多维数组转换为一维数组以及验证字符串中的括号是否成对出现。通过多种实现方法的解析,帮助开发者更好地理解和掌握这些技巧。 ... [详细]
  • Chapter11&12:DefocusBlur&FinalScene在Camera.h中修改如下:#pragmaonce#define_USE ... [详细]
  • LambdaMART算法详解
    本文详细介绍了LambdaMART算法的背景、原理及其在信息检索中的应用。首先回顾了LambdaMART的发展历程,包括其前身RankNet和LambdaRank,然后深入探讨了LambdaMART如何结合梯度提升决策树(GBDT)和LambdaRank来优化排序问题。 ... [详细]
  • 在Python编程学习过程中,许多初学者常遇到各种功能实现难题。虽然这些问题往往并不复杂,但找到高效解决方案却能显著提升编程效率。本文将介绍一个名为‘30-seconds-of-python’的优质资源,帮助大家快速掌握实用的Python技巧。 ... [详细]
  • 本文深入探讨了CART(分类与回归树)的基本原理及其在随机森林中的应用。重点介绍了CART的分裂准则、防止过拟合的方法、处理样本不平衡的策略以及其在回归问题中的应用。此外,还详细解释了随机森林的构建过程、样本均衡处理、OOB估计及特征重要性的计算。 ... [详细]
  • 随着生活节奏的加快和压力的增加,越来越多的人感到不快乐。本文探讨了现代社会中导致人们幸福感下降的各种因素,并提供了一些改善建议。 ... [详细]
  • Python中HOG图像特征提取与应用
    本文介绍如何在Python中使用HOG(Histogram of Oriented Gradients)算法进行图像特征提取,探讨其在目标检测中的应用,并详细解释实现步骤。 ... [详细]
  • Python 工具推荐 | PyHubWeekly 第二十一期:提升命令行体验的五大工具
    本期 PyHubWeekly 为大家精选了 GitHub 上五个优秀的 Python 工具,涵盖金融数据可视化、终端美化、国际化支持、图像增强和远程 Shell 环境配置。欢迎关注并参与项目。 ... [详细]
  • 由二叉树到贪心算法
    二叉树很重要树是数据结构中的重中之重,尤其以各类二叉树为学习的难点。单就面试而言,在 ... [详细]
  • 本文旨在探讨如何利用决策树算法实现对男女性别的分类。通过引入信息熵和信息增益的概念,结合具体的数据集,详细介绍了决策树的构建过程,并展示了其在实际应用中的效果。 ... [详细]
  • 写在前面,排序算法属于面试中绝对不会错过的一道题,不管是原理,手撕,变形,优化,全都是考点。接 ... [详细]
  • 深入解析Android中的SQLite数据库使用
    本文详细介绍了如何在Android应用中使用SQLite数据库进行数据存储。通过自定义类继承SQLiteOpenHelper,实现数据库的创建与版本管理,并提供了具体的学生信息管理示例代码。 ... [详细]
  • ▶书中第四章部分程序,包括在加上自己补充的代码,有边权有向图的邻接矩阵,FloydWarshall算法可能含负环的有边权有向图任意两点之间的最短路径●有边权有向图的邻接矩阵1 ... [详细]
author-avatar
vuvhvuvh
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有