热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

机器学习数学基础导数和偏导数

概述导数(Derivative)是微积分中的重要基础概念。当函数yf(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy

概述

导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f’(x0)或df(x0)/dx。
导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
在数学中,一个多变量的函数的偏导数(partial derivative),就是它关于其中一个变量的导数而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。


导数

设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δy=f(x0+Δx)-f(x0);如果Δy与Δx之比当Δx→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限为函数y=f(x)在点x0处的导数记作①f’(x0) ;②y’│x=x0 ;③ │x=x0, 即
这里写图片描述


偏导数


定义

在一元函数中,我们已经知道导数就是函数的变化率。对于二元函数我们同样要研究它的“变化率”。然而,由于自变量多了一个,情况就要复杂的多。见下图:
这里写图片描述
如上,
在xOy平面内,当动点由P(x0,y0)沿不同方向变化时,函数f(x,y)的变化快慢一般说来是不同的,因此就需要研究f(x,y)在(x0,y0)点处沿不同方向的变化率。
在这里我们只学习函数f(x,y)沿着平行于x轴和平行于y轴两个特殊方位变动时,f(x,y)的变化率。
偏导数的表示符号为:∂。
偏导数反映的是函数沿坐标轴正方向的变化率。


表示

如果函数z=f(x,y)在区域D内每一点(x,y)处对x的偏导数都存在,那么这个偏导数就是x、y的函数,称其为函数z=f(x,y)对自变量x的偏导函数,记作:
这里写图片描述

【未完待续】



http://dec.jlu.edu.cn/baozi/upload/000007/html/8_2.htm


推荐阅读
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 本文详细介绍了如何解决Uploadify插件在Internet Explorer(IE)9和10版本中遇到的点击失效及JQuery运行时错误问题。通过修改相关JavaScript代码,确保上传功能在不同浏览器环境中的一致性和稳定性。 ... [详细]
  • PHP 5.2.5 安装与配置指南
    本文详细介绍了 PHP 5.2.5 的安装和配置步骤,帮助开发者解决常见的环境配置问题,特别是上传图片时遇到的错误。通过本教程,您可以顺利搭建并优化 PHP 运行环境。 ... [详细]
  • PyCharm下载与安装指南
    本文详细介绍如何从官方渠道下载并安装PyCharm集成开发环境(IDE),涵盖Windows、macOS和Linux系统,同时提供详细的安装步骤及配置建议。 ... [详细]
  • 本文介绍了如何利用JavaScript或jQuery来判断网页中的文本框是否处于焦点状态,以及如何检测鼠标是否悬停在指定的HTML元素上。 ... [详细]
  • 探讨如何高效使用FastJSON进行JSON数据解析,特别是从复杂嵌套结构中提取特定字段值的方法。 ... [详细]
  • 导航栏样式练习:项目实例解析
    本文详细介绍了如何创建一个具有动态效果的导航栏,包括HTML、CSS和JavaScript代码的实现,并附有详细的说明和效果图。 ... [详细]
  • 本文介绍了Java并发库中的阻塞队列(BlockingQueue)及其典型应用场景。通过具体实例,展示了如何利用LinkedBlockingQueue实现线程间高效、安全的数据传递,并结合线程池和原子类优化性能。 ... [详细]
  • 深入理解Cookie与Session会话管理
    本文详细介绍了如何通过HTTP响应和请求处理浏览器的Cookie信息,以及如何创建、设置和管理Cookie。同时探讨了会话跟踪技术中的Session机制,解释其原理及应用场景。 ... [详细]
  • 本文详细介绍了在使用 SmartUpload 组件进行文件上传时,如何正确配置和查找文件保存路径。通过具体的代码示例和步骤说明,帮助开发者快速解决上传路径配置的问题。 ... [详细]
  • 本文探讨如何利用Java反射技术来模拟Webwork框架中的URL解析过程。通过这一实践,读者可以更好地理解Webwork及其后续版本Struts2的工作原理,尤其是它们在MVC架构下的角色。 ... [详细]
  • 在互联网信息爆炸的时代,当用户需求模糊或难以通过精确查询表达时,推荐系统成为解决信息过载的有效手段。美团作为国内领先的O2O平台,通过深入分析用户行为,运用先进的机器学习技术优化推荐算法,提升用户体验。 ... [详细]
  • 全能终端工具推荐:高效、免费、易用
    介绍一款备受好评的全能型终端工具——MobaXterm,它不仅功能强大,而且完全免费,适合各类用户使用。 ... [详细]
  • 百度云加速节点IP白名单配置指南:宝塔面板Nginx防火墙应用
    百度云加速为已备案的网站提供免费加速服务,但使用宝塔面板自带Nginx防火墙的用户需将百度云加速的CDN IP段加入白名单以确保正常访问。本文将详细介绍如何操作。 ... [详细]
  • 本文详细介绍了一个既适用于PHP5也适用于PHP7的cURL文件上传解决方案。此示例源于项目需求,旨在通过cURL实现文件上传功能,并解决不同PHP版本间的兼容性问题。 ... [详细]
author-avatar
vaaal52653
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有