热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

机器学习实战笔记K近邻算法3(手写识别系统)

1准备数据:将图像转换为测试向量这次数据集还是有两种,训练数据集和测试数据集,分别有2000个,900个。我们将把一个32*32的二进制图像矩阵转换为1x1024的向量,这样前两节

1 准备数据:将图像转换为测试向量
这次数据集还是有两种,训练数据集和测试数据集,分别有2000个,900个。
我们将把一个32*32的二进制图像矩阵转换为1 x 1024的向量,这样前两节使用的分类器就可以处理数字图像信息了。
代码:

def img2vector(filename): 
returnVect = zeros((1,1024))
file = open(filename)
for i in range(32):
line = file.readline()
for j in range(32):
returnVect[0,i*32+j] = line[j]
return returnVect

 


效果截图:
机器学习实战笔记-K近邻算法3(手写识别系统)
测试算法
代码:

def handWritingTest(): 
hwLabels = []
trainingFileList = os.listdir('trainingDigits')
trainingFileLength = len(trainingFileList)
trainingMat = zeros((trainingFileLength,1024))
for i in range(trainingFileLength):
fileNameStr = trainingFileList[i]
className = fileNameStr.split('_')[0]
hwLabels.append(int(className))
fileVector = img2vector('trainingDigits/' + fileNameStr)
trainingMat[i,:] = fileVector
testFileList = os.listdir('testDigits')
testFileLength = len(testFileList)
errorCount = 0.0
for i in range(testFileLength):
fileNameStr = testFileList[i]
className = int(fileNameStr.split('_')[0])
fileVector = img2vector('testDigits/' + fileNameStr)
testResult = classify0(fileVector,trainingMat,hwLabels,3)
print("the classifier came back with: %d, the real answer is: %d" % (testResult,className))
if(testResult != className):
errorCount+=1.0
errorRate = errorCount/float(testFileLength)
print("the errorRate is : %f" % errorRate)

结果截图:
机器学习实战笔记-K近邻算法3(手写识别系统)

分别将k改为4,5:
机器学习实战笔记-K近邻算法3(手写识别系统)
机器学习实战笔记-K近邻算法3(手写识别系统)
可以发现错误率逐渐增高


推荐阅读
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
  • 使用Numpy实现无外部库依赖的双线性插值图像缩放
    本文介绍如何仅使用Numpy库,通过双线性插值方法实现图像的高效缩放,避免了对OpenCV等图像处理库的依赖。文中详细解释了算法原理,并提供了完整的代码示例。 ... [详细]
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • C++实现经典排序算法
    本文详细介绍了七种经典的排序算法及其性能分析。每种算法的平均、最坏和最好情况的时间复杂度、辅助空间需求以及稳定性都被列出,帮助读者全面了解这些排序方法的特点。 ... [详细]
  • 本文详细介绍了 Dockerfile 的编写方法及其在网络配置中的应用,涵盖基础指令、镜像构建与发布流程,并深入探讨了 Docker 的默认网络、容器互联及自定义网络的实现。 ... [详细]
  • 在前两篇文章中,我们探讨了 ControllerDescriptor 和 ActionDescriptor 这两个描述对象,分别对应控制器和操作方法。本文将基于 MVC3 源码进一步分析 ParameterDescriptor,即用于描述 Action 方法参数的对象,并详细介绍其工作原理。 ... [详细]
  • 本文详细介绍了Akka中的BackoffSupervisor机制,探讨其在处理持久化失败和Actor重启时的应用。通过具体示例,展示了如何配置和使用BackoffSupervisor以实现更细粒度的异常处理。 ... [详细]
  • 深入理解C++中的KMP算法:高效字符串匹配的利器
    本文详细介绍C++中实现KMP算法的方法,探讨其在字符串匹配问题上的优势。通过对比暴力匹配(BF)算法,展示KMP算法如何利用前缀表优化匹配过程,显著提升效率。 ... [详细]
  • 本文详细介绍了Java中org.w3c.dom.Text类的splitText()方法,通过多个代码示例展示了其实际应用。该方法用于将文本节点在指定位置拆分为两个节点,并保持在文档树中。 ... [详细]
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • 2023年京东Android面试真题解析与经验分享
    本文由一位拥有6年Android开发经验的工程师撰写,详细解析了京东面试中常见的技术问题。涵盖引用传递、Handler机制、ListView优化、多线程控制及ANR处理等核心知识点。 ... [详细]
  • MySQL索引详解与优化
    本文深入探讨了MySQL中的索引机制,包括索引的基本概念、优势与劣势、分类及其实现原理,并详细介绍了索引的使用场景和优化技巧。通过具体示例,帮助读者更好地理解和应用索引以提升数据库性能。 ... [详细]
  • 本文介绍了如何在Python中使用join()方法将列表中的元素连接成一个字符串。join()方法允许用户指定分隔符,从而灵活地生成所需格式的字符串。此外,我们还将探讨一些实际应用中的注意事项和技巧。 ... [详细]
  • 尽管使用TensorFlow和PyTorch等成熟框架可以显著降低实现递归神经网络(RNN)的门槛,但对于初学者来说,理解其底层原理至关重要。本文将引导您使用NumPy从头构建一个用于自然语言处理(NLP)的RNN模型。 ... [详细]
author-avatar
横店东磁何静
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有