热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

机器视觉应用软件开发步骤及流程

点击上方“小白学视觉”,选择加星标或“置顶”重磅干货,第一时间送达机器视觉工程应用主要可划分为硬件和软件两大部分。硬件:工程应用的第一

点击上方“小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

机器视觉工程应用主要可划分为硬件和软件两大部分。

硬件:工程应用的第一步就是硬件选型。硬件选型很关键,因为它是你后面工作的基础。主要是光源、工业相机和镜头选择。

软件:目前业内商业库主要有Halcon,康耐视,DALSA,evision,NI等,开源库有OpenCV.其中NI的labview+vision模块。


机器视觉工程应用的基本开发思路是:

一、图像采集,二、图像分割,三、形态学处理,四、特征提取,五、输出结果。

下面在Halcon下对这四个步骤进行讲解。

一、图像采集:

Halcon通过imageacquisition interfaces对各种图像采集卡及各种工业相机进行支持。其中包括:模拟视频信号,数字视频信号Camera Link,数字视频信号IEEE 1394,数字视频信号USB2.0,数字视频信号Gigabit Ethernet等。 
Halcon通过统一的接口封装上述不同相机的image acquisition interfaces,从而达到算子统一化。不同的相机只需更改几个参数就可变更使用。

Halcon图像获取的思路:1、打开设备,获得该设备的句柄。2、调用采集算子,获取图像。

1、打开设备,获得该设备的句柄。

 

open_framegrabber('DahengCAM', 1, 1, 0, 0, 0, 0, 'interlaced', 8, 'gray', -1, 'false','HV-13xx', '1', 1, -1, AcqHandle) //连接相机,并设置相关参数

Parameter

Values

Default

Type

Description

Name

'DahengCAM'


string

Name of the HALCON interface.

HorizontalResolution

1

1


1表示水平全部,2为水平1/2,表示图像截取。

VerticalResolution

11

同上,表示垂直方向。

ImageWidth

0

integer

所需的图像部分的宽度('0 '代表了完整的图像)。

ImageHeight0integer所需的图像部分的高度(0”是完整的图像)
StartRow0integer所需的图像部分左上方的像素行坐标
StartColumn0integer所需的图像部分左上方的像素列坐标
Field


忽视
BitsPerChannel


忽视
ColorSpace'default', 'gray', 'rgb''gray'stringHALCON图像的通道模式
Generic


忽视
ExternalTrigger

'false', 'true'

'false'string外部触发状态
CameraType'HV-13xx', 'HV-20xx', 'HV-30xx', 'HV-31xx','HV-50xx', 'SV-xxxx''HV-13xx'string所连接的摄像机系列型。
Device'1', '2', '3', ...'1'string相机连接第一个设备号“1”,第二个设备编号“2”。
Port


忽视
LineIn


忽视

2、调用采集算子,获取图像。

grab_image (Image, AcqHandle) //(同步采集)完后处理图像,然后再采集图像。采集图像的速率受处理速度影响。

grab_image_async (Image, AcqHandle,MaxDelay) //(异步采集),一幅画面采集完后相机马上采集下一幅画面,不受处理速度影响。其中第三个参数为:MaxDelay,表示异步采集时可以允许的最大延时,本次采集命令距上次采集命令的时间不能超出MaxDelay,超出即重新采集。

图像采集其他相关算子:

     grab_image_start,该算子开始命令相机进行异步采集。只能与grab_image_async(异步采集)一起使用。

例子:

* Select a suitable image acquisition interface nameAcqName
open_framegrabber(AcqName,1,1,0,0,0,0,'default',-1,'default',-1.0,\'default','default','default',-1,-1,AcqHandle)
grab_image(Image1,AcqHandle)//进行同步采集
* Start next grab
grab_image_start(AcqHandle,-1.0)//命令相机进行异步图像采集开始
* Process Image1 ...
* Finish asynchronous grab + start next grab
grab_image_async(Image2,AcqHandle,-1.0)//读取异步采集的图像
* Process Image2 ...
close_framegrabber(AcqHandle)

3、相机参数读写

读取相机参数:

info_framegrabber( : : Name, Query : Information, ValueList)

写相机参数:

set_framegrabber_param( : : AcqHandle, Param, Value : )

 

二、图像分割:

图像分割的定义: 
所谓图像分割是指将图像中具有特殊含义的不同区域分割开来,这些区域是互相不交叉的,每个区域都满足特定区域的一致性。

1、基于阈值的图像分割

threshold —采用全局阈值分割图像。

格式:    threshold(Image : Region : MinGray, MaxGray : )

自动全局阈值分割的方法:

(1)计算灰度直方图 
(2)寻找出现频率最多的灰度值(最大值) 
(3)在threshold中使用与最大值有一定距离的值作为阈值

代码:

gray_histo(Regions, Image,AbsoluteHisto, RelativeHisto) //计算出图像区域内的绝对和相对灰度值直方图。
PeakGray := sort_index(AbsoluteHisto)[255] //求出出现频率最多的灰度值
threshold(Image,Region,0,PeakGray-25)
bin_threshold — 使用一个自动确定的阈值分割图像。
格式:bin_threshold(Image : Region : : )dyn_threshold —使用一个局部阈值分割图像。
格式:dyn_threshold(OrigImage, ThresholdImage : RegionDynThresh : Offset, LightDark : )
例子:
mean_image(Image,Mean,21,21)
dyn_threshold(Image,Mean, RegionDynThresh,15,'dark')
var_threshold —阈值图像局部均值和标准差的分析。
格式:var_threshold(Image : Region : MaskWidth, MaskHeight, StdDevScale, AbsThreshold, LightDark : ) 2、基于边缘的图像分割:寻找区域之间的边界
watersheds —从图像中提取分水岭和盆地。
格式:watersheds(Image : Basins, Watersheds : : )
watersheds_threshold —使用阈值从图像中提取分水岭和盆地。
格式:watersheds_threshold(Image : Basins : Threshold : )

 

3、基于区域的图像分割:直接创建区域

 

三、形态学处理

形态学处理以集合运算为基础。

腐蚀、膨胀、开操作、闭操作是所有形态学图像处理的基础。

开操作(先腐蚀再膨胀)使对象的轮廓变得光滑,断开狭窄的间断和消除细的突出物。

闭操作(先膨胀再腐蚀)消弥狭窄的间断和长细的鸿沟,消除小的孔洞,填补轮廓线的断裂。

形体学基础算子:

erosion1 
dilation1 
opening 
closing

常用的形态学相关算子 
connection 
select_shape 
opening_circle 
closing_circle 
opening_rectangle1 
closing_rectangle1 
complement 
difference 
interp 
union1 
shaps_trans 
fill_up

形态学高级算子: 
boundary 
skeleton

四、特征提取:

1、区域特征:

area 
moments

smallest_rectangle1

smallest_circle

convexity:区域面积与凸包面积的比例

contlength:区域边界的长度

compactness

2、灰度特征

estimate_noise

select_gray

五、输出结果:

(1)获取满足条件的区域

(2)区域分类,比如OCR

(3)测量

(4)质量检测

原文引自:http://www.cnblogs.com/hanzhaoxin/archive/2013/02/15/2912879.html

向作者致敬!!

声明:部分内容来源于网络,仅供读者学习、交流之目的。文章版权归原作者所有。如有不妥,请联系删除。

下载1:OpenCV-Contrib扩展模块中文版教程

在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。

下载2:Python视觉实战项目52讲

在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。

下载3:OpenCV实战项目20讲

在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。

交流群

欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~



推荐阅读
  • 本文深入探讨了CGLIB BeanCopier在Bean对象复制中的应用及其优化技巧。相较于Spring的BeanUtils和Apache的BeanUtils,CGLIB BeanCopier在性能上具有显著优势。通过详细分析其内部机制和使用场景,本文提供了多种优化方法,帮助开发者在实际项目中更高效地利用这一工具。此外,文章还讨论了CGLIB BeanCopier在复杂对象结构和大规模数据处理中的表现,为读者提供了实用的参考和建议。 ... [详细]
  • 本文探讨了资源访问的学习路径与方法,旨在帮助学习者更高效地获取和利用各类资源。通过分析不同资源的特点和应用场景,提出了多种实用的学习策略和技术手段,为学习者提供了系统的指导和建议。 ... [详细]
  • IOS Run loop详解
    为什么80%的码农都做不了架构师?转自http:blog.csdn.netztp800201articledetails9240913感谢作者分享Objecti ... [详细]
  • 本文详细介绍了MySQL数据库的基础语法与核心操作,涵盖从基础概念到具体应用的多个方面。首先,文章从基础知识入手,逐步深入到创建和修改数据表的操作。接着,详细讲解了如何进行数据的插入、更新与删除。在查询部分,不仅介绍了DISTINCT和LIMIT的使用方法,还探讨了排序、过滤和通配符的应用。此外,文章还涵盖了计算字段以及多种函数的使用,包括文本处理、日期和时间处理及数值处理等。通过这些内容,读者可以全面掌握MySQL数据库的核心操作技巧。 ... [详细]
  • 在《Cocos2d-x学习笔记:基础概念解析与内存管理机制深入探讨》中,详细介绍了Cocos2d-x的基础概念,并深入分析了其内存管理机制。特别是针对Boost库引入的智能指针管理方法进行了详细的讲解,例如在处理鱼的运动过程中,可以通过编写自定义函数来动态计算角度变化,利用CallFunc回调机制实现高效的游戏逻辑控制。此外,文章还探讨了如何通过智能指针优化资源管理和避免内存泄漏,为开发者提供了实用的编程技巧和最佳实践。 ... [详细]
  • 如何将TS文件转换为M3U8直播流:HLS与M3U8格式详解
    在视频传输领域,MP4虽然常见,但在直播场景中直接使用MP4格式存在诸多问题。例如,MP4文件的头部信息(如ftyp、moov)较大,导致初始加载时间较长,影响用户体验。相比之下,HLS(HTTP Live Streaming)协议及其M3U8格式更具优势。HLS通过将视频切分成多个小片段,并生成一个M3U8播放列表文件,实现低延迟和高稳定性。本文详细介绍了如何将TS文件转换为M3U8直播流,包括技术原理和具体操作步骤,帮助读者更好地理解和应用这一技术。 ... [详细]
  • 基于Net Core 3.0与Web API的前后端分离开发:Vue.js在前端的应用
    本文介绍了如何使用Net Core 3.0和Web API进行前后端分离开发,并重点探讨了Vue.js在前端的应用。后端采用MySQL数据库和EF Core框架进行数据操作,开发环境为Windows 10和Visual Studio 2019,MySQL服务器版本为8.0.16。文章详细描述了API项目的创建过程、启动步骤以及必要的插件安装,为开发者提供了一套完整的开发指南。 ... [详细]
  • Spring框架中枚举参数的正确使用方法与技巧
    本文详细阐述了在Spring Boot框架中正确使用枚举参数的方法与技巧,旨在帮助开发者更高效地掌握和应用枚举类型的数据传递,适合对Spring Boot感兴趣的读者深入学习。 ... [详细]
  • 当使用 `new` 表达式(即通过 `new` 动态创建对象)时,会发生两件事:首先,内存被分配用于存储新对象;其次,该对象的构造函数被调用以初始化对象。为了确保资源管理的一致性和避免内存泄漏,建议在使用 `new` 和 `delete` 时保持形式一致。例如,如果使用 `new[]` 分配数组,则应使用 `delete[]` 来释放内存;同样,如果使用 `new` 分配单个对象,则应使用 `delete` 来释放内存。这种一致性有助于防止常见的编程错误,提高代码的健壮性和可维护性。 ... [详细]
  • 使用Maven JAR插件将单个或多个文件及其依赖项合并为一个可引用的JAR包
    本文介绍了如何利用Maven中的maven-assembly-plugin插件将单个或多个Java文件及其依赖项打包成一个可引用的JAR文件。首先,需要创建一个新的Maven项目,并将待打包的Java文件复制到该项目中。通过配置maven-assembly-plugin,可以实现将所有文件及其依赖项合并为一个独立的JAR包,方便在其他项目中引用和使用。此外,该方法还支持自定义装配描述符,以满足不同场景下的需求。 ... [详细]
  • MyISAM和InnoDB是MySQL中最为广泛使用的两种存储引擎,每种引擎都有其独特的优势和适用场景。MyISAM引擎以其简单的结构和高效的读取速度著称,适用于以读操作为主、对事务支持要求不高的应用。而InnoDB引擎则以其强大的事务处理能力和行级锁定机制,在需要高并发写操作和数据完整性的场景下表现出色。选择合适的存储引擎应综合考虑业务需求、性能要求和数据一致性等因素。 ... [详细]
  • 本文介绍了如何在iOS平台上使用GLSL着色器将YV12格式的视频帧数据转换为RGB格式,并展示了转换后的图像效果。通过详细的技术实现步骤和代码示例,读者可以轻松掌握这一过程,适用于需要进行视频处理的应用开发。 ... [详细]
  • 《Intel IA-32 架构软件开发人员手册详尽指南》提供了详尽的 IA-32 架构技术文档,涵盖指令集、系统编程和硬件接口等内容,为软件开发人员提供全面的技术支持和参考。该手册不仅包括详细的架构说明,还提供了丰富的编程示例和最佳实践,帮助开发人员更好地理解和应用 IA-32 架构。 ... [详细]
  • 在托管C++中开发应用程序时,遇到了如何声明和操作字符串数组的问题。本文详细探讨了字符串数组在托管C++中的应用与实现方法,包括声明、初始化、遍历和常见操作技巧,为开发者提供了实用的参考和指导。 ... [详细]
  • 探索聚类分析中的K-Means与DBSCAN算法及其应用
    聚类分析是一种用于解决样本或特征分类问题的统计分析方法,也是数据挖掘领域的重要算法之一。本文主要探讨了K-Means和DBSCAN两种聚类算法的原理及其应用场景。K-Means算法通过迭代优化簇中心来实现数据点的划分,适用于球形分布的数据集;而DBSCAN算法则基于密度进行聚类,能够有效识别任意形状的簇,并且对噪声数据具有较好的鲁棒性。通过对这两种算法的对比分析,本文旨在为实际应用中选择合适的聚类方法提供参考。 ... [详细]
author-avatar
寒灵
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有