作者:甄之恋 | 来源:互联网 | 2023-09-24 20:08
一:概念
顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,必须要经过关键码的多次比较。顺序查找时间复杂度为O(N),平衡树中为树的高度,即O(log_2 N),搜索的效率取决于搜索过程中元素的比较次数。
理想的搜索方法:可以不经过任何比较,一次直接从表中得到要搜索的元素。 如果构造一种存储结构,通过某种函数使元素的存储位置与它的关键码之间能够建立一一映射的关系,那么在查找时通过该函数可以很快找到该元素。
当向该结构中:
插入元素
根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放。
搜索元素
对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则搜索成功。
该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表(HashTable)(或者称散列表)
二: 冲突-概念
对于两个数据元素的关键字K1!=K2,但有:Hash(K1) == Hash(K2),即:不同关键码通过相同哈希函数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞。
把具有不同关键码而具有相同哈希地址的数据元素称为“同义词”。
三:冲突-避免-设计哈希函数
引起哈希冲突的一个原因可能是:哈希函数设计不够合理。 哈希函数设计原则:
1.哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值域必须在0到m-1之间。
2.哈希函数计算出来的地址能均匀分布在整个空间中。
3.哈希函数应该比较简单。
常见哈希函数有:
直接定制法--(常用)
取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B
优点:简单、均匀
缺点:需要事先知道关键字的分布情况
使用场景:适合查找比较小且连续的情况
- 除留余数法--(常用)
设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,按照哈希函数:Hash(key) = key% p(p<=m),将关键码转换成哈希地址。 - 平方取中法--(了解) 折叠法--(了解)随机数法--(了解)数学分析法--(了解)。
四:冲突-避免-设计哈希函数
五: 冲突-解决
解决哈希冲突两种常见的方法是:闭散列(线性探测法)和开散列(拉链桶)
六:(1)冲突-解决-闭散列
闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去。那如何寻找下一个空位置呢?
线性探测:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。
插入:
通过哈希函数获取待插入元素在哈希表中的位置,如果该位置中没有元素则直接插入新元素,如果该位置中有元素发生哈希冲突,使用线性探测找到下一个空位置,插入新元素。
采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,若直接删除元素会影响其他元素的搜索。比如删除元素4,如果直接删除掉,44查找起来可能会受影响。因此线性探测采用标记的伪删除法来删除一个元素。
但是:闭散列最大的缺陷就是空间利用率比较低,这也是哈希的缺陷。
六:(2)冲突-解决-开散列/哈希桶(重点)
开散列法又叫链地址法(开链法),首先对关键码集合用散列函数计算散列地址,具有相同地址的关键码归于同一子集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表链接起来,各链表的头结点存储在哈希表中。
从上图可以看出,开散列中每个桶中放的都是发生哈希冲突的元素。
开散列,可以认为是把一个在大集合中的搜索问题转化为在小集合中做搜索了。
七:性能分析
虽然哈希表一直在和冲突做斗争,但在实际使用过程中,我们认为哈希表的冲突率是不高的,冲突个数是可控的,也就是每个桶中的链表的长度是一个常数,所以,通常意义下,我们认为哈希表的插入/删除/查找时间复杂度是O(1) 。
八:和 java 类集的关系
- HashMap 和 HashSet 即 java 中利用哈希表实现的 Map 和 Set
- java 中使用的是哈希桶方式解决冲突的
- java 会在冲突链表长度大于一定阈值后,将链表转变为搜索树(红黑树)
- java 中计算哈希值实际上是调用的类的 hashCode 方法,进行 key 的相等性比较是调用 key 的 equals 方法。所以如果要用自定义类作为 HashMap 的 key 或者 HashSet 的值,必须覆写 hashCode 和 equals 方 法,而且要做到 equals 相等的对象,hashCode 一定是一致的。