热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

JAVA集合类(java.util)源码阅读笔记------Hashtable

一、继承关系publicclassHashtable<K,V>extendsDictionary<K,V>implementsMap<K,V>,Clo
一、继承关系

public class Hashtable extends Dictionary implements Map, Cloneable, java.io.Serializable
(1)继承自Dictionary抽象类,实现了Map接口,Cloneable接口和Serializable可序列化接口
(2)cloneable:可以重写Object的clone方法,并调用super.clone()获取复制的对象。
(3)所有public方法都是同步的,是一个线程安全的集合类

二、成员变量

private transient Entry[] table
private transient int count;//table中所有entry的个数
private int threshold;//扩容的临界值count >= threshold,threshold=loadFactor*capacity,
private float loadFactor;//加载因子threshold=loadFactor*capacity,加载因子越大,table的利用率越高
private transient int modCount = 0;//单线程,多线程操作可能会引起Hashtable fail-fast,抛出ConcurrentModificationException异常

private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;//table的最大size

//三种遍历方式
private transient volatile Set keySet;
private transient volatile Set> entrySet;
private transient volatile Collection values;

三、主要方法

1、构造方法

//传递一个table的初始容量和加载因子,table的初始化在构造函数中进行(与HashMap不同,hashmap在put第一个node中进行)。
public Hashtable(int initialCapacity, float loadFactor) {
if (initialCapacity <0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal Load: "+loadFactor);

if (initialCapacity==0)
initialCapacity = 1;
//设置loadFactor,threshold的值,为table申请空间
this.loadFactor = loadFactor;
//与HashMap不同,table的size可以随意指定,不用为2的整数次幂,甚至都不用超过11(默认的初始容量)
table = new Entry[initialCapacity];
threshold = (int)Math.min(initialCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
}
//默认的loadFactor=0.75
public Hashtable(int initialCapacity) {
this(initialCapacity, 0.75f);
}
//默认的capacity=11
public Hashtable() {
this(11, 0.75f);
}
//2*t.size()保证不用插进去就需要扩容
public Hashtable(Map t) {
this(Math.max(2*t.size(), 11), 0.75f);
putAll(t);
}


2、同步方法

(1)size

    public synchronized int size() {
return count;
}


(2)isEmpty

    public synchronized boolean isEmpty() {
return count == 0;
}


(3)keys:依次遍历table中所有的entry的key,调用getEnumeration实现

    public synchronized Enumeration keys() {
return this.getEnumeration(KEYS);
}


(4)elements:依次遍历table中所有的entry的value,调用getEnumeration实现

    public synchronized Enumeration elements() {
return this.getEnumeration(VALUES);
}


(5)containsValue

    public boolean containsValue(Object value) {
return contains(value);
}
//从table[len-1]开始,依次遍历每个bin中的entry查找value
public synchronized boolean contains(Object value) {
if (value == null) {
throw new NullPointerException();
}

Entry tab[] = table;
for (int i = tab.length ; i-- > 0 ;) {
for (Entry e = tab[i] ; e != null ; e = e.next) {
if (e.value.equals(value)) {
return true;
}
}
}
return false;
}


(6)containsKey

    public synchronized boolean containsKey(Object key) {
Entry tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
for (Entry e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
return true;
}
}
return false;
}


(7)get:查找key对应的value

@SuppressWarnings("unchecked")
public synchronized V get(Object key) {
Entry tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
for (Entry e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
return (V)e.value;
}
}
return null;
}


(8)put

    public synchronized V put(K key, V value) {
// Make sure the value is not null
if (value == null) {
throw new NullPointerException();
}

// Makes sure the key is not already in the hashtable.
Entry tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry entry = (Entry)tab[index];
//更新
for(; entry != null ; entry = entry.next) {
if ((entry.hash == hash) && entry.key.equals(key)) {
V old = entry.value;
entry.value = value;
return old;
}
}
//插入
addEntry(hash, key, value, index);
return null;
}
private void addEntry(int hash, K key, V value, int index) {
modCount++;
Entry tab[] = table;
//当前节点数大于threshold进行rehash
if (count >= threshold) {
// Rehash the table if the threshold is exceeded
rehash();

tab = table;
hash = key.hashCode();
index = (hash & 0x7FFFFFFF) % tab.length;
}

// Creates the new entry.
@SuppressWarnings("unchecked")
Entry e = (Entry) tab[index];
//首部插入新节点
tab[index] = new Entry<>(hash, key, value, e);
count++;
}


(9)remove

    public synchronized V remove(Object key) {
Entry tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry e = (Entry)tab[index];
for(Entry prev = null ; e != null ; prev = e, e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
modCount++;
if (prev != null) {
prev.next = e.next;
} else {
tab[index] = e.next;
}
count--;
V oldValue = e.value;
e.value = null;
return oldValue;
}
}
return null;
}


(10)putAll

    public synchronized void putAll(Map t) {
for (Map.Entry e : t.entrySet())
put(e.getKey(), e.getValue());
}


(11)clear

    public synchronized void clear() {
Entry tab[] = table;
modCount++;
for (int index = tab.length; --index >= 0; )
tab[index] = null;
count = 0;
}


(12)clone

    public synchronized Object clone() {
try {
Hashtable t = (Hashtable)super.clone();
t.table = new Entry[table.length];
for (int i = table.length ; i-- > 0 ; ) {
t.table[i] = (table[i] != null)
? (Entry) table[i].clone() : null;
}
t.keySet = null;
t.entrySet = null;
t.values = null;
t.modCount = 0;
return t;
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError(e);
}
}



3、重要的方法

(1)rehash:扩容,不是同步的
思路:
将capatity*2,根据loadfactor重新设置threshold
依次逆序遍历oldMap中所有Bin中的节点,重新映射到newMap的bin中。这里是从链表头插入,所以顺序与OldMap中的相反。hashMap是插入链表尾部,顺序相同。

与hashMap的resize不同点:
(1)hashMap的resize中可能对table进行初始化,这里初始化在构造函数中进行
(2)扩容方式:hashmap中 newCap=oldCap*2,这样保证新容量依然是2的整数次幂;hashTable中,newCap=oldCap*2+1
(3)映射方式:hashMap中oldMap中同一个bin中node只可能映射到i和i+oldCap两个桶中;hashTable中由于不要求cap是2的整数次幂,所以oldCap中同一个bin中可能映射到newMap的各个Bin中
(4)转移数据方式:hashMap中oldMap和newMap中node在链表中相对顺序不变,是在链表尾部插入的;hashTable中顺序逆向了,在链表首部插入的。
(5)效率:hashMap效率更高,采用&操作映射;HashTable效率低,采用%
(6)桶的结构:hashMap中当节点数大于8时,单链表会转化成红黑树;HashTable始终以单链表存储

@SuppressWarnings("unchecked")
protected void rehash() {
int oldCapacity = table.length;
Entry[] oldMap = table;

// 扩容方法:新容量=就容量*2+1
int newCapacity = (oldCapacity <<1) + 1;
if (newCapacity - MAX_ARRAY_SIZE > 0) {
if (oldCapacity == MAX_ARRAY_SIZE)
// Keep running with MAX_ARRAY_SIZE buckets
return;
newCapacity = MAX_ARRAY_SIZE;
}
Entry[] newMap = new Entry[newCapacity];

modCount++;
//确定新的临界值threshold
threshold = (int)Math.min(newCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
table = newMap;
//逆序遍历oldMap的桶中的所有节点,并依次映射到newMap中的桶
for (int i = oldCapacity ; i-- > 0 ;) {
for (Entry old = (Entry)oldMap[i] ; old != null ; ) {
Entry e = old;
old = old.next;
//oldMap映射到newMap的bin的方法:直接取余
int index = (e.hash & 0x7FFFFFFF) % newCapacity;
//每次都从newMap的链表的头部插入
e.next = (Entry)newMap[index];
newMap[index] = e;
}
}
}



(2)getEnumeration:创建了一个Enumerator对象,该对象实现了Iterator接口和Enumeration接口

    private  Enumeration getEnumeration(int type) {
if (count == 0) {
return Collections.emptyEnumeration();
} else {
return new Enumerator<>(type, false);
}
}



(3)getIterator:创建了一个Enumerator对象,该对象实现了Iterator接口和Enumeration接口

    private  Iterator getIterator(int type) {
if (count == 0) {
return Collections.emptyIterator();
} else {
return new Enumerator<>(type, true);
}
}



四、内部类 (1) Entry
实现了Map.Entry接口,带一个指针的节点。

private static class Entry implements Map.Entry {
final int hash;
final K key;
V value;
Entry next;

protected Entry(int hash, K key, V value, Entry next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}

@SuppressWarnings("unchecked")
protected Object clone() {
return new Entry<>(hash, key, value,
(next==null ? null : (Entry) next.clone()));
}

// Map.Entry Ops

public K getKey() {
return key;
}

public V getValue() {
return value;
}

public V setValue(V value) {
if (value == null)
throw new NullPointerException();

V oldValue = this.value;
this.value = value;
return oldValue;
}

public boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry e = (Map.Entry)o;

return (key==null ? e.getKey()==null : key.equals(e.getKey())) &&
(value==null ? e.getValue()==null : value.equals(e.getValue()));
}

public int hashCode() {
return hash ^ Objects.hashCode(value);
}

public String toString() {
return key.toString()+"="+value.toString();
}
}

(2)Enumerator:同时继承了Enumeration和Iterator接口
private class Enumerator implements Enumeration, Iterator {
Entry[] table = Hashtable.this.table;
int index = table.length;
Entry entry;
Entry lastReturned;
int type;//三种类型,KEYS,VALUES,ENTRIYS

/**
* Indicates whether this Enumerator is serving as an Iterator
* or an Enumeration. (true -> Iterator).
*/
boolean iterator;

/**
* The modCount value that the iterator believes that the backing
* Hashtable should have. If this expectation is violated, the iterator
* has detected concurrent modification.
*/
protected int expectedModCount = modCount;

Enumerator(int type, boolean iterator) {
this.type = type;
this.iterator = iterator;
}

public boolean hasMoreElements() {
Entry e = entry;
int i = index;
Entry[] t = table;
/* Use locals for faster loop iteration */
while (e == null && i > 0) {
e = t[--i];
}
entry = e;
index = i;
return e != null;
}

@SuppressWarnings("unchecked")
public T nextElement() {
Entry et = entry;
int i = index;
Entry[] t = table;
/* Use locals for faster loop iteration */
while (et == null && i > 0) {
et = t[--i];
}
entry = et;
index = i;
if (et != null) {
Entry e = lastReturned = entry;
entry = e.next;
return type == KEYS ? (T)e.key : (type == VALUES ? (T)e.value : (T)e);
}
throw new NoSuchElementException("Hashtable Enumerator");
}

// Iterator methods
public boolean hasNext() {
return hasMoreElements();
}

public T next() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
return nextElement();
}

public void remove() {
if (!iterator)
throw new UnsupportedOperationException();
if (lastReturned == null)
throw new IllegalStateException("Hashtable Enumerator");
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
//同步加锁
synchronized(Hashtable.this) {
Entry[] tab = Hashtable.this.table;
int index = (lastReturned.hash & 0x7FFFFFFF) % tab.length;

@SuppressWarnings("unchecked")
Entry e = (Entry)tab[index];
for(Entry prev = null; e != null; prev = e, e = e.next) {
if (e == lastReturned) {
modCount++;
expectedModCount++;
if (prev == null)
tab[index] = e.next;
else
prev.next = e.next;
count--;
lastReturned = null;
return;
}
}
throw new ConcurrentModificationException();
}
}
}

五、遍历方式分析
(1)keySet方法
public Set keySet() {
if (keySet == null)
//同步的
keySet = Collections.synchronizedSet(new KeySet(), this);
return keySet;
}

private class KeySet extends AbstractSet {
public Iterator iterator() {
//关键点,调用getIterator(KEYS)实现
return getIterator(KEYS);
}
public int size() {
return count;
}
public boolean contains(Object o) {
return containsKey(o);
}
public boolean remove(Object o) {
return Hashtable.this.remove(o) != null;
}
public void clear() {
Hashtable.this.clear();
}
}

(2)entrySet
public Set> entrySet() {
if (entrySet==null)
//同步的
entrySet = Collections.synchronizedSet(new EntrySet(), this);
return entrySet;
}

private class EntrySet extends AbstractSet> {
public Iterator> iterator() {
//关键点,调用getIterator(ENTRIES)实现
return getIterator(ENTRIES);
}

public boolean add(Map.Entry o) {
return super.add(o);
}

public boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry entry = (Map.Entry)o;
Object key = entry.getKey();
Entry[] tab = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;

for (Entry e = tab[index]; e != null; e = e.next)
if (e.hash==hash && e.equals(entry))
return true;
return false;
}

public boolean remove(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry entry = (Map.Entry) o;
Object key = entry.getKey();
Entry[] tab = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;

@SuppressWarnings("unchecked")
Entry e = (Entry)tab[index];
for(Entry prev = null; e != null; prev = e, e = e.next) {
if (e.hash==hash && e.equals(entry)) {
modCount++;
if (prev != null)
prev.next = e.next;
else
tab[index] = e.next;

count--;
e.value = null;
return true;
}
}
return false;
}

public int size() {
return count;
}

public void clear() {
Hashtable.this.clear();
}
}

(3)values
public Collection values() {
if (values==null)
//同步的
values = Collections.synchronizedCollection(new ValueCollection(),
this);
return values;
}

private class ValueCollection extends AbstractCollection {
public Iterator iterator() {
//关键点,调用getIterator(VALUES)实现
return getIterator(VALUES);
}
public int size() {
return count;
}
public boolean contains(Object o) {
return containsValue(o);
}
public void clear() {
Hashtable.this.clear();
}
}





推荐阅读
  • 本文介绍了Java高并发程序设计中线程安全的概念与synchronized关键字的使用。通过一个计数器的例子,演示了多线程同时对变量进行累加操作时可能出现的问题。最终值会小于预期的原因是因为两个线程同时对变量进行写入时,其中一个线程的结果会覆盖另一个线程的结果。为了解决这个问题,可以使用synchronized关键字来保证线程安全。 ... [详细]
  • JDK源码学习之HashTable(附带面试题)的学习笔记
    本文介绍了JDK源码学习之HashTable(附带面试题)的学习笔记,包括HashTable的定义、数据类型、与HashMap的关系和区别。文章提供了干货,并附带了其他相关主题的学习笔记。 ... [详细]
  • 本文讨论了微软的STL容器类是否线程安全。根据MSDN的回答,STL容器类包括vector、deque、list、queue、stack、priority_queue、valarray、map、hash_map、multimap、hash_multimap、set、hash_set、multiset、hash_multiset、basic_string和bitset。对于单个对象来说,多个线程同时读取是安全的。但如果一个线程正在写入一个对象,那么所有的读写操作都需要进行同步。 ... [详细]
  • HashMap的相关问题及其底层数据结构和操作流程
    本文介绍了关于HashMap的相关问题,包括其底层数据结构、JDK1.7和JDK1.8的差异、红黑树的使用、扩容和树化的条件、退化为链表的情况、索引的计算方法、hashcode和hash()方法的作用、数组容量的选择、Put方法的流程以及并发问题下的操作。文章还提到了扩容死链和数据错乱的问题,并探讨了key的设计要求。对于对Java面试中的HashMap问题感兴趣的读者,本文将为您提供一些有用的技术和经验。 ... [详细]
  • PHP反射API的功能和用途详解
    本文详细介绍了PHP反射API的功能和用途,包括动态获取信息和调用对象方法的功能,以及自动加载插件、生成文档、扩充PHP语言等用途。通过反射API,可以获取类的元数据,创建类的实例,调用方法,传递参数,动态调用类的静态方法等。PHP反射API是一种内建的OOP技术扩展,通过使用Reflection、ReflectionClass和ReflectionMethod等类,可以帮助我们分析其他类、接口、方法、属性和扩展。 ... [详细]
  • 开发笔记:加密&json&StringIO模块&BytesIO模块
    篇首语:本文由编程笔记#小编为大家整理,主要介绍了加密&json&StringIO模块&BytesIO模块相关的知识,希望对你有一定的参考价值。一、加密加密 ... [详细]
  • Android中高级面试必知必会,积累总结
    本文介绍了Android中高级面试的必知必会内容,并总结了相关经验。文章指出,如今的Android市场对开发人员的要求更高,需要更专业的人才。同时,文章还给出了针对Android岗位的职责和要求,并提供了简历突出的建议。 ... [详细]
  • Java容器中的compareto方法排序原理解析
    本文从源码解析Java容器中的compareto方法的排序原理,讲解了在使用数组存储数据时的限制以及存储效率的问题。同时提到了Redis的五大数据结构和list、set等知识点,回忆了作者大学时代的Java学习经历。文章以作者做的思维导图作为目录,展示了整个讲解过程。 ... [详细]
  • Java学习笔记之面向对象编程(OOP)
    本文介绍了Java学习笔记中的面向对象编程(OOP)内容,包括OOP的三大特性(封装、继承、多态)和五大原则(单一职责原则、开放封闭原则、里式替换原则、依赖倒置原则)。通过学习OOP,可以提高代码复用性、拓展性和安全性。 ... [详细]
  • 本文讨论了clone的fork与pthread_create创建线程的不同之处。进程是一个指令执行流及其执行环境,其执行环境是一个系统资源的集合。在调用系统调用fork创建一个进程时,子进程只是完全复制父进程的资源,这样得到的子进程独立于父进程,具有良好的并发性。但是二者之间的通讯需要通过专门的通讯机制,另外通过fork创建子进程系统开销很大。因此,在某些情况下,使用clone或pthread_create创建线程可能更加高效。 ... [详细]
  • 本文介绍了Python爬虫技术基础篇面向对象高级编程(中)中的多重继承概念。通过继承,子类可以扩展父类的功能。文章以动物类层次的设计为例,讨论了按照不同分类方式设计类层次的复杂性和多重继承的优势。最后给出了哺乳动物和鸟类的设计示例,以及能跑、能飞、宠物类和非宠物类的增加对类数量的影响。 ... [详细]
  • 本文介绍了在MFC下利用C++和MFC的特性动态创建窗口的方法,包括继承现有的MFC类并加以改造、插入工具栏和状态栏对象的声明等。同时还提到了窗口销毁的处理方法。本文详细介绍了实现方法并给出了相关注意事项。 ... [详细]
  • C#多线程解决界面卡死问题的完美解决方案
    当界面需要在程序运行中不断更新数据时,使用多线程可以解决界面卡死的问题。一个主线程创建界面,使用一个子线程执行程序并更新主界面,可以避免卡死现象。本文分享了一个例子,供大家参考。 ... [详细]
  • 深入理解Java虚拟机的并发编程与性能优化
    本文主要介绍了Java内存模型与线程的相关概念,探讨了并发编程在服务端应用中的重要性。同时,介绍了Java语言和虚拟机提供的工具,帮助开发人员处理并发方面的问题,提高程序的并发能力和性能优化。文章指出,充分利用计算机处理器的能力和协调线程之间的并发操作是提高服务端程序性能的关键。 ... [详细]
  • 1Lock与ReadWriteLock1.1LockpublicinterfaceLock{voidlock();voidlockInterruptibl ... [详细]
author-avatar
一个人跳舞飘
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有