IDA pro 反编译exe时生成的C文件中#include
/*
This file contains definitions used by the Hex-Rays decompiler output.
It has type definitions and convenience macros to make the
output more readable.
Copyright (c) 2007-2015 Hex-Rays
*/
#ifndef HEXRAYS_DEFS_H
#define HEXRAYS_DEFS_H
#if defined(__GNUC__)
typedef long long ll;
typedef unsigned long long ull;
#define __int64 long long
#define __int32 int
#define __int16 short
#define __int8 char
#define MAKELL(num) num ## LL
#define FMT_64 "ll"
#elif defined(_MSC_VER)
typedef __int64 ll;
typedef unsigned __int64 ull;
#define MAKELL(num) num ## i64
#define FMT_64 "I64"
#elif defined (__BORLANDC__)
typedef __int64 ll;
typedef unsigned __int64 ull;
#define MAKELL(num) num ## i64
#define FMT_64 "L"
#else
#error "unknown compiler"
#endif
typedef unsigned int uint;
typedef unsigned char uchar;
typedef unsigned short ushort;
typedef unsigned long ulong;
typedef char int8;
typedef signed char sint8;
typedef unsigned char uint8;
typedef short int16;
typedef signed short sint16;
typedef unsigned short uint16;
typedef int int32;
typedef signed int sint32;
typedef unsigned int uint32;
typedef ll int64;
typedef ll sint64;
typedef ull uint64;
// Partially defined types. They are used when the decompiler does not know
// anything about the type except its size.
#define _BYTE uint8
#define _WORD uint16
#define _DWORD uint32
#define _QWORD uint64
#if !defined(_MSC_VER)
#define _LONGLONG __int128
#endif
// Non-standard boolean types. They are used when the decompiler can not use
// the standard "bool" type because of the size mistmatch but the possible
// values are only 0 and 1. See also 'BOOL' type below.
typedef int8 _BOOL1;
typedef int16 _BOOL2;
typedef int32 _BOOL4;
#ifndef _WINDOWS_
typedef int8 BYTE;
typedef int16 WORD;
typedef int32 DWORD;
typedef int32 LONG;
typedef int BOOL; // uppercase BOOL is usually 4 bytes
#endif
typedef int64 QWORD;
#ifndef __cplusplus
typedef int bool; // we want to use bool in our C programs
#endif
#define __pure // pure function: always returns the same value, has no
// side effects
// Non-returning function
#if defined(__GNUC__)
#define __noreturn __attribute__((noreturn))
#else
#define __noreturn __declspec(noreturn)
#endif
#ifndef NULL
#define NULL 0
#endif
// Some convenience macros to make partial accesses nicer
// first unsigned macros:
#define LOBYTE(x) (*((_BYTE*)&(x))) // low byte
#define LOWORD(x) (*((_WORD*)&(x))) // low word
#define LODWORD(x) (*((_DWORD*)&(x))) // low dword
#define HIBYTE(x) (*((_BYTE*)&(x)+1))
#define HIWORD(x) (*((_WORD*)&(x)+1))
#define HIDWORD(x) (*((_DWORD*)&(x)+1))
#define BYTEn(x, n) (*((_BYTE*)&(x)+n))
#define WORDn(x, n) (*((_WORD*)&(x)+n))
#define BYTE1(x) BYTEn(x, 1) // byte 1 (counting from 0)
#define BYTE2(x) BYTEn(x, 2)
#define BYTE3(x) BYTEn(x, 3)
#define BYTE4(x) BYTEn(x, 4)
#define BYTE5(x) BYTEn(x, 5)
#define BYTE6(x) BYTEn(x, 6)
#define BYTE7(x) BYTEn(x, 7)
#define BYTE8(x) BYTEn(x, 8)
#define BYTE9(x) BYTEn(x, 9)
#define BYTE10(x) BYTEn(x, 10)
#define BYTE11(x) BYTEn(x, 11)
#define BYTE12(x) BYTEn(x, 12)
#define BYTE13(x) BYTEn(x, 13)
#define BYTE14(x) BYTEn(x, 14)
#define BYTE15(x) BYTEn(x, 15)
#define WORD1(x) WORDn(x, 1)
#define WORD2(x) WORDn(x, 2) // third word of the object, unsigned
#define WORD3(x) WORDn(x, 3)
#define WORD4(x) WORDn(x, 4)
#define WORD5(x) WORDn(x, 5)
#define WORD6(x) WORDn(x, 6)
#define WORD7(x) WORDn(x, 7)
// now signed macros (the same but with sign extension)
#define SLOBYTE(x) (*((int8*)&(x)))
#define SLOWORD(x) (*((int16*)&(x)))
#define SLODWORD(x) (*((int32*)&(x)))
#define SHIBYTE(x) (*((int8*)&(x)+1))
#define SHIWORD(x) (*((int16*)&(x)+1))
#define SHIDWORD(x) (*((int32*)&(x)+1))
#define SBYTEn(x, n) (*((int8*)&(x)+n))
#define SWORDn(x, n) (*((int16*)&(x)+n))
#define SBYTE1(x) SBYTEn(x, 1)
#define SBYTE2(x) SBYTEn(x, 2)
#define SBYTE3(x) SBYTEn(x, 3)
#define SBYTE4(x) SBYTEn(x, 4)
#define SBYTE5(x) SBYTEn(x, 5)
#define SBYTE6(x) SBYTEn(x, 6)
#define SBYTE7(x) SBYTEn(x, 7)
#define SBYTE8(x) SBYTEn(x, 8)
#define SBYTE9(x) SBYTEn(x, 9)
#define SBYTE10(x) SBYTEn(x, 10)
#define SBYTE11(x) SBYTEn(x, 11)
#define SBYTE12(x) SBYTEn(x, 12)
#define SBYTE13(x) SBYTEn(x, 13)
#define SBYTE14(x) SBYTEn(x, 14)
#define SBYTE15(x) SBYTEn(x, 15)
#define SWORD1(x) SWORDn(x, 1)
#define SWORD2(x) SWORDn(x, 2)
#define SWORD3(x) SWORDn(x, 3)
#define SWORD4(x) SWORDn(x, 4)
#define SWORD5(x) SWORDn(x, 5)
#define SWORD6(x) SWORDn(x, 6)
#define SWORD7(x) SWORDn(x, 7)
// Helper functions to represent some assembly instructions.
#ifdef __cplusplus
// compile time assertion
#define __CASSERT_N0__(l) COMPILE_TIME_ASSERT_ ## l
#define __CASSERT_N1__(l) __CASSERT_N0__(l)
#define CASSERT(cnd) typedef char __CASSERT_N1__(__LINE__) [(cnd) ? 1 : -1]
// check that unsigned multiplication does not overflow
template
{
CASSERT((T)(-1) > 0); // make sure T is unsigned
if ( elsize == 0 || count == 0 )
return true;
return count <&#61; ((T)(-1)) / elsize;
}
// multiplication that saturates (yields the biggest value) instead of overflowing
// such a construct is useful in "operator new[]"
template
{
return is_mul_ok(count, elsize) ? count * elsize : T(-1);
}
#include
// memcpy() with determined behavoir: it always copies
// from the start to the end of the buffer
// note: it copies byte by byte, so it is not equivalent to, for example, rep movsd
inline void *qmemcpy(void *dst, const void *src, size_t cnt)
{
char *out &#61; (char *)dst;
const char *in &#61; (const char *)src;
while ( cnt > 0 )
{
*out&#43;&#43; &#61; *in&#43;&#43;;
--cnt;
}
return dst;
}
// Generate a reference to pair of operands // rotate left if ( count > 0 ) inline uint8 __ROL1__(uint8 value, int count) { return __ROL__((uint8)value, count); } // carry flag of left shift return (value >> (nbits-count)) & 1; // carry flag of right shift // sign flag // overflow flag of subtraction (x-y) // overflow flag of addition (x&#43;y) // carry flag of subtraction (x-y) // carry flag of addition (x&#43;y) #else // No definition for rcl/rcr because the carry flag is unknown // In the decompilation listing there are some objects declarared as _UNKNOWN #define _UNKNOWN char #ifdef _MSC_VER #endif // HEXRAYS_DEFS_H
template
template
{
const uint nbits &#61; sizeof(T) * 8;
{
count %&#61; nbits;
T high &#61; value >> (nbits - count);
if ( T(-1) <0 ) // signed value
high &&#61; ~((T(-1) <
value |&#61; high;
}
else
{
count &#61; -count % nbits;
T low &#61; value <<(nbits - count);
value >>&#61; count;
value |&#61; low;
}
return value;
}
inline uint16 __ROL2__(uint16 value, int count) { return __ROL__((uint16)value, count); }
inline uint32 __ROL4__(uint32 value, int count) { return __ROL__((uint32)value, count); }
inline uint64 __ROL8__(uint64 value, int count) { return __ROL__((uint64)value, count); }
inline uint8 __ROR1__(uint8 value, int count) { return __ROL__((uint8)value, -count); }
inline uint16 __ROR2__(uint16 value, int count) { return __ROL__((uint16)value, -count); }
inline uint32 __ROR4__(uint32 value, int count) { return __ROL__((uint32)value, -count); }
inline uint64 __ROR8__(uint64 value, int count) { return __ROL__((uint64)value, -count); }
template
{
const uint nbits &#61; sizeof(T) * 8;
count %&#61; nbits;
}
template
{
return (value >> (count-1)) & 1;
}
template
{
if ( sizeof(T) &#61;&#61; 1 )
return int8(x) <0;
if ( sizeof(T) &#61;&#61; 2 )
return int16(x) <0;
if ( sizeof(T) &#61;&#61; 4 )
return int32(x) <0;
return int64(x) <0;
}
template
{
if ( sizeof(T)
U x2 &#61; x;
int8 sx &#61; __SETS__(x2);
return (sx ^ __SETS__(y)) & (sx ^ __SETS__(x2-y));
}
else
{
T y2 &#61; y;
int8 sx &#61; __SETS__(x);
return (sx ^ __SETS__(y2)) & (sx ^ __SETS__(x-y2));
}
}
template
{
if ( sizeof(T)
U x2 &#61; x;
int8 sx &#61; __SETS__(x2);
return ((1 ^ sx) ^ __SETS__(y)) & (sx ^ __SETS__(x2&#43;y));
}
else
{
T y2 &#61; y;
int8 sx &#61; __SETS__(x);
return ((1 ^ sx) ^ __SETS__(y2)) & (sx ^ __SETS__(x&#43;y2));
}
}
template
{
int size &#61; sizeof(T) > sizeof(U) ? sizeof(T) : sizeof(U);
if ( size &#61;&#61; 1 )
return uint8(x)
return uint16(x)
return uint32(x)
template
{
int size &#61; sizeof(T) > sizeof(U) ? sizeof(T) : sizeof(U);
if ( size &#61;&#61; 1 )
return uint8(x) > uint8(x&#43;y);
if ( size &#61;&#61; 2 )
return uint16(x) > uint16(x&#43;y);
if ( size &#61;&#61; 4 )
return uint32(x) > uint32(x&#43;y);
return uint64(x) > uint64(x&#43;y);
}
// The following definition is not quite correct because it always returns
// uint64. The above C&#43;&#43; functions are good, though.
#define __PAIR__(high, low) (((uint64)(high)<
#define __ROL__(x, y) __rotl__(x, y) // Rotate left
#define __ROR__(x, y) __rotr__(x, y) // Rotate right
#define __CFSHL__(x, y) invalid_operation // Generate carry flag for (x<
#define __CFADD__(x, y) invalid_operation // Generate carry flag for (x&#43;y)
#define __CFSUB__(x, y) invalid_operation // Generate carry flag for (x-y)
#define __OFADD__(x, y) invalid_operation // Generate overflow flag for (x&#43;y)
#define __OFSUB__(x, y) invalid_operation // Generate overflow flag for (x-y)
#endif
#define __RCL__(x, y) invalid_operation // Rotate left thru carry
#define __RCR__(x, y) invalid_operation // Rotate right thru carry
#define __MKCRCL__(x, y) invalid_operation // Generate carry flag for a RCL
#define __MKCRCR__(x, y) invalid_operation // Generate carry flag for a RCR
#define __SETP__(x, y) invalid_operation // Generate parity flag for (x-y)
// because we could not determine their types. Since the C compiler does not
// accept void item declarations, we replace them by anything of our choice,
// for example a char:
#define snprintf _snprintf
#define vsnprintf _vsnprintf
#endif