热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

IDAProdef.h

IDApro反编译exe时生成的C文件中#include的defs.h文件在IDA目录下plugins文件夹内*Thisfilecontainsdefinition

IDA pro 反编译exe时生成的C文件中#include的defs.h 文件在IDA目录下plugins文件夹内

 

/*

   This file contains definitions used by the Hex-Rays decompiler output.
   It has type definitions and convenience macros to make the
   output more readable.

   Copyright (c) 2007-2015 Hex-Rays

*/

#ifndef HEXRAYS_DEFS_H
#define HEXRAYS_DEFS_H

#if defined(__GNUC__)
  typedef          long long ll;
  typedef unsigned long long ull;
  #define __int64 long long
  #define __int32 int
  #define __int16 short
  #define __int8  char
  #define MAKELL(num) num ## LL
  #define FMT_64 "ll"
#elif defined(_MSC_VER)
  typedef          __int64 ll;
  typedef unsigned __int64 ull;
  #define MAKELL(num) num ## i64
  #define FMT_64 "I64"
#elif defined (__BORLANDC__)
  typedef          __int64 ll;
  typedef unsigned __int64 ull;
  #define MAKELL(num) num ## i64
  #define FMT_64 "L"
#else
  #error "unknown compiler"
#endif
typedef unsigned int uint;
typedef unsigned char uchar;
typedef unsigned short ushort;
typedef unsigned long ulong;

typedef          char   int8;
typedef   signed char   sint8;
typedef unsigned char   uint8;
typedef          short  int16;
typedef   signed short  sint16;
typedef unsigned short  uint16;
typedef          int    int32;
typedef   signed int    sint32;
typedef unsigned int    uint32;
typedef ll              int64;
typedef ll              sint64;
typedef ull             uint64;

// Partially defined types. They are used when the decompiler does not know
// anything about the type except its size.
#define _BYTE  uint8
#define _WORD  uint16
#define _DWORD uint32
#define _QWORD uint64
#if !defined(_MSC_VER)
#define _LONGLONG __int128
#endif

// Non-standard boolean types. They are used when the decompiler can not use
// the standard "bool" type because of the size mistmatch but the possible
// values are only 0 and 1. See also 'BOOL' type below.
typedef int8 _BOOL1;
typedef int16 _BOOL2;
typedef int32 _BOOL4;

#ifndef _WINDOWS_
typedef int8 BYTE;
typedef int16 WORD;
typedef int32 DWORD;
typedef int32 LONG;
typedef int BOOL;       // uppercase BOOL is usually 4 bytes
#endif
typedef int64 QWORD;
#ifndef __cplusplus
typedef int bool;       // we want to use bool in our C programs
#endif

#define __pure          // pure function: always returns the same value, has no
                        // side effects

// Non-returning function
#if defined(__GNUC__)
#define __noreturn  __attribute__((noreturn))
#else
#define __noreturn  __declspec(noreturn)
#endif


#ifndef NULL
#define NULL 0
#endif

// Some convenience macros to make partial accesses nicer
// first unsigned macros:
#define LOBYTE(x)   (*((_BYTE*)&(x)))   // low byte
#define LOWORD(x)   (*((_WORD*)&(x)))   // low word
#define LODWORD(x)  (*((_DWORD*)&(x)))  // low dword
#define HIBYTE(x)   (*((_BYTE*)&(x)+1))
#define HIWORD(x)   (*((_WORD*)&(x)+1))
#define HIDWORD(x)  (*((_DWORD*)&(x)+1))
#define BYTEn(x, n)   (*((_BYTE*)&(x)+n))
#define WORDn(x, n)   (*((_WORD*)&(x)+n))
#define BYTE1(x)   BYTEn(x,  1)         // byte 1 (counting from 0)
#define BYTE2(x)   BYTEn(x,  2)
#define BYTE3(x)   BYTEn(x,  3)
#define BYTE4(x)   BYTEn(x,  4)
#define BYTE5(x)   BYTEn(x,  5)
#define BYTE6(x)   BYTEn(x,  6)
#define BYTE7(x)   BYTEn(x,  7)
#define BYTE8(x)   BYTEn(x,  8)
#define BYTE9(x)   BYTEn(x,  9)
#define BYTE10(x)  BYTEn(x, 10)
#define BYTE11(x)  BYTEn(x, 11)
#define BYTE12(x)  BYTEn(x, 12)
#define BYTE13(x)  BYTEn(x, 13)
#define BYTE14(x)  BYTEn(x, 14)
#define BYTE15(x)  BYTEn(x, 15)
#define WORD1(x)   WORDn(x,  1)
#define WORD2(x)   WORDn(x,  2)         // third word of the object, unsigned
#define WORD3(x)   WORDn(x,  3)
#define WORD4(x)   WORDn(x,  4)
#define WORD5(x)   WORDn(x,  5)
#define WORD6(x)   WORDn(x,  6)
#define WORD7(x)   WORDn(x,  7)

// now signed macros (the same but with sign extension)
#define SLOBYTE(x)   (*((int8*)&(x)))
#define SLOWORD(x)   (*((int16*)&(x)))
#define SLODWORD(x)  (*((int32*)&(x)))
#define SHIBYTE(x)   (*((int8*)&(x)+1))
#define SHIWORD(x)   (*((int16*)&(x)+1))
#define SHIDWORD(x)  (*((int32*)&(x)+1))
#define SBYTEn(x, n)   (*((int8*)&(x)+n))
#define SWORDn(x, n)   (*((int16*)&(x)+n))
#define SBYTE1(x)   SBYTEn(x,  1)
#define SBYTE2(x)   SBYTEn(x,  2)
#define SBYTE3(x)   SBYTEn(x,  3)
#define SBYTE4(x)   SBYTEn(x,  4)
#define SBYTE5(x)   SBYTEn(x,  5)
#define SBYTE6(x)   SBYTEn(x,  6)
#define SBYTE7(x)   SBYTEn(x,  7)
#define SBYTE8(x)   SBYTEn(x,  8)
#define SBYTE9(x)   SBYTEn(x,  9)
#define SBYTE10(x)  SBYTEn(x, 10)
#define SBYTE11(x)  SBYTEn(x, 11)
#define SBYTE12(x)  SBYTEn(x, 12)
#define SBYTE13(x)  SBYTEn(x, 13)
#define SBYTE14(x)  SBYTEn(x, 14)
#define SBYTE15(x)  SBYTEn(x, 15)
#define SWORD1(x)   SWORDn(x,  1)
#define SWORD2(x)   SWORDn(x,  2)
#define SWORD3(x)   SWORDn(x,  3)
#define SWORD4(x)   SWORDn(x,  4)
#define SWORD5(x)   SWORDn(x,  5)
#define SWORD6(x)   SWORDn(x,  6)
#define SWORD7(x)   SWORDn(x,  7)


// Helper functions to represent some assembly instructions.

#ifdef __cplusplus

// compile time assertion
#define __CASSERT_N0__(l) COMPILE_TIME_ASSERT_ ## l
#define __CASSERT_N1__(l) __CASSERT_N0__(l)
#define CASSERT(cnd) typedef char __CASSERT_N1__(__LINE__) [(cnd) ? 1 : -1]

// check that unsigned multiplication does not overflow
template bool is_mul_ok(T count, T elsize)
{
  CASSERT((T)(-1) > 0); // make sure T is unsigned
  if ( elsize  == 0 || count == 0 )
    return true;
  return count <&#61; ((T)(-1)) / elsize;
}

// multiplication that saturates (yields the biggest value) instead of overflowing
// such a construct is useful in "operator new[]"
template bool saturated_mul(T count, T elsize)
{
  return is_mul_ok(count, elsize) ? count * elsize : T(-1);
}

#include // for size_t

// memcpy() with determined behavoir: it always copies
// from the start to the end of the buffer
// note: it copies byte by byte, so it is not equivalent to, for example, rep movsd
inline void *qmemcpy(void *dst, const void *src, size_t cnt)
{
  char *out &#61; (char *)dst;
  const char *in &#61; (const char *)src;
  while ( cnt > 0 )
  {
    *out&#43;&#43; &#61; *in&#43;&#43;;
    --cnt;
  }
  return dst;
}

// Generate a reference to pair of operands
template  int16 __PAIR__( int8  high, T low) { return ((( int16)high) < template  int32 __PAIR__( int16 high, T low) { return ((( int32)high) < template  int64 __PAIR__( int32 high, T low) { return ((( int64)high) < template uint16 __PAIR__(uint8  high, T low) { return (((uint16)high) < template uint32 __PAIR__(uint16 high, T low) { return (((uint32)high) < template uint64 __PAIR__(uint32 high, T low) { return (((uint64)high) <

// rotate left
template T __ROL__(T value, int count)
{
  const uint nbits &#61; sizeof(T) * 8;

  if ( count > 0 )
  {
    count %&#61; nbits;
    T high &#61; value >> (nbits - count);
    if ( T(-1) <0 ) // signed value
      high &&#61; ~((T(-1) <     value <<&#61; count;
    value |&#61; high;
  }
  else
  {
    count &#61; -count % nbits;
    T low &#61; value <<(nbits - count);
    value >>&#61; count;
    value |&#61; low;
  }
  return value;
}

inline uint8  __ROL1__(uint8  value, int count) { return __ROL__((uint8)value, count); }
inline uint16 __ROL2__(uint16 value, int count) { return __ROL__((uint16)value, count); }
inline uint32 __ROL4__(uint32 value, int count) { return __ROL__((uint32)value, count); }
inline uint64 __ROL8__(uint64 value, int count) { return __ROL__((uint64)value, count); }
inline uint8  __ROR1__(uint8  value, int count) { return __ROL__((uint8)value, -count); }
inline uint16 __ROR2__(uint16 value, int count) { return __ROL__((uint16)value, -count); }
inline uint32 __ROR4__(uint32 value, int count) { return __ROL__((uint32)value, -count); }
inline uint64 __ROR8__(uint64 value, int count) { return __ROL__((uint64)value, -count); }

// carry flag of left shift
template int8 __MKCSHL__(T value, uint count)
{
  const uint nbits &#61; sizeof(T) * 8;
  count %&#61; nbits;

  return (value >> (nbits-count)) & 1;
}

// carry flag of right shift
template int8 __MKCSHR__(T value, uint count)
{
  return (value >> (count-1)) & 1;
}

// sign flag
template int8 __SETS__(T x)
{
  if ( sizeof(T) &#61;&#61; 1 )
    return int8(x) <0;
  if ( sizeof(T) &#61;&#61; 2 )
    return int16(x) <0;
  if ( sizeof(T) &#61;&#61; 4 )
    return int32(x) <0;
  return int64(x) <0;
}

// overflow flag of subtraction (x-y)
template int8 __OFSUB__(T x, U y)
{
  if ( sizeof(T)   {
    U x2 &#61; x;
    int8 sx &#61; __SETS__(x2);
    return (sx ^ __SETS__(y)) & (sx ^ __SETS__(x2-y));
  }
  else
  {
    T y2 &#61; y;
    int8 sx &#61; __SETS__(x);
    return (sx ^ __SETS__(y2)) & (sx ^ __SETS__(x-y2));
  }
}

// overflow flag of addition (x&#43;y)
template int8 __OFADD__(T x, U y)
{
  if ( sizeof(T)   {
    U x2 &#61; x;
    int8 sx &#61; __SETS__(x2);
    return ((1 ^ sx) ^ __SETS__(y)) & (sx ^ __SETS__(x2&#43;y));
  }
  else
  {
    T y2 &#61; y;
    int8 sx &#61; __SETS__(x);
    return ((1 ^ sx) ^ __SETS__(y2)) & (sx ^ __SETS__(x&#43;y2));
  }
}

// carry flag of subtraction (x-y)
template int8 __CFSUB__(T x, U y)
{
  int size &#61; sizeof(T) > sizeof(U) ? sizeof(T) : sizeof(U);
  if ( size &#61;&#61; 1 )
    return uint8(x)   if ( size &#61;&#61; 2 )
    return uint16(x)   if ( size &#61;&#61; 4 )
    return uint32(x)   return uint64(x) }

// carry flag of addition (x&#43;y)
template int8 __CFADD__(T x, U y)
{
  int size &#61; sizeof(T) > sizeof(U) ? sizeof(T) : sizeof(U);
  if ( size &#61;&#61; 1 )
    return uint8(x) > uint8(x&#43;y);
  if ( size &#61;&#61; 2 )
    return uint16(x) > uint16(x&#43;y);
  if ( size &#61;&#61; 4 )
    return uint32(x) > uint32(x&#43;y);
  return uint64(x) > uint64(x&#43;y);
}

#else
// The following definition is not quite correct because it always returns
// uint64. The above C&#43;&#43; functions are good, though.
#define __PAIR__(high, low) (((uint64)(high)< // For C, we just provide macros, they are not quite correct.
#define __ROL__(x, y) __rotl__(x, y)      // Rotate left
#define __ROR__(x, y) __rotr__(x, y)      // Rotate right
#define __CFSHL__(x, y) invalid_operation // Generate carry flag for (x< #define __CFSHR__(x, y) invalid_operation // Generate carry flag for (x>>y)
#define __CFADD__(x, y) invalid_operation // Generate carry flag for (x&#43;y)
#define __CFSUB__(x, y) invalid_operation // Generate carry flag for (x-y)
#define __OFADD__(x, y) invalid_operation // Generate overflow flag for (x&#43;y)
#define __OFSUB__(x, y) invalid_operation // Generate overflow flag for (x-y)
#endif

// No definition for rcl/rcr because the carry flag is unknown
#define __RCL__(x, y)    invalid_operation // Rotate left thru carry
#define __RCR__(x, y)    invalid_operation // Rotate right thru carry
#define __MKCRCL__(x, y) invalid_operation // Generate carry flag for a RCL
#define __MKCRCR__(x, y) invalid_operation // Generate carry flag for a RCR
#define __SETP__(x, y)   invalid_operation // Generate parity flag for (x-y)

// In the decompilation listing there are some objects declarared as _UNKNOWN
// because we could not determine their types. Since the C compiler does not
// accept void item declarations, we replace them by anything of our choice,
// for example a char:

#define _UNKNOWN char

#ifdef _MSC_VER
#define snprintf _snprintf
#define vsnprintf _vsnprintf
#endif

#endif // HEXRAYS_DEFS_H
 


推荐阅读
  • 本文详细介绍了如何使用C#实现不同类型的系统服务账户(如Windows服务、计划任务和IIS应用池)的密码重置方法。 ... [详细]
  • 视觉Transformer综述
    本文综述了视觉Transformer在计算机视觉领域的应用,从原始Transformer出发,详细介绍了其在图像分类、目标检测和图像分割等任务中的最新进展。文章不仅涵盖了基础的Transformer架构,还深入探讨了各类增强版Transformer模型的设计思路和技术细节。 ... [详细]
  • 本文介绍了如何通过C#语言调用动态链接库(DLL)中的函数来实现IC卡的基本操作,包括初始化设备、设置密码模式、获取设备状态等,并详细展示了将TextBox中的数据写入IC卡的具体实现方法。 ... [详细]
  • 本文将深入探讨 Unreal Engine 4 (UE4) 中的距离场技术,包括其原理、实现细节以及在渲染中的应用。距离场技术在现代游戏引擎中用于提高光照和阴影的效果,尤其是在处理复杂几何形状时。文章将结合具体代码示例,帮助读者更好地理解和应用这一技术。 ... [详细]
  • 本文介绍了如何解决 ChinaASP.Upload 错误 '80040002',即必须添加版权信息的问题,并提供了详细的步骤和注意事项。 ... [详细]
  • 本文探讨了如何在游戏启动画面中移除广告,特别是在游戏数据加载期间(大约5-6秒)广告会短暂显示的问题。通过调整XML布局和代码逻辑,可以实现广告的延迟加载或完全移除。 ... [详细]
  • 本文详细介绍如何在SSM(Spring + Spring MVC + MyBatis)框架中实现分页功能。包括分页的基本概念、数据准备、前端分页栏的设计与实现、后端分页逻辑的编写以及最终的测试步骤。 ... [详细]
  • 深入解析Unity3D游戏开发中的音频播放技术
    在游戏开发中,音频播放是提升玩家沉浸感的关键因素之一。本文将探讨如何在Unity3D中高效地管理和播放不同类型的游戏音频,包括背景音乐和效果音效,并介绍实现这些功能的具体步骤。 ... [详细]
  • 本文回顾了作者在求职阿里和腾讯实习生过程中,从最初的迷茫到最后成功获得Offer的心路历程。文中不仅分享了个人的面试经历,还提供了宝贵的面试准备建议和技巧。 ... [详细]
  • 服务器虚拟化存储设计,完美规划储存与资源,部署高性能虚拟化桌面
    规划部署虚拟桌面环境前,必须先估算目前所使用实体桌面环境的工作负载与IOPS性能,并慎选储存设备。唯有谨慎估算贴近实际的IOPS性能,才能 ... [详细]
  • 在1995年,Simon Plouffe 发现了一种特殊的求和方法来表示某些常数。两年后,Bailey 和 Borwein 在他们的论文中发表了这一发现,这种方法被命名为 Bailey-Borwein-Plouffe (BBP) 公式。该问题要求计算圆周率 π 的第 n 个十六进制数字。 ... [详细]
  • Android与JUnit集成测试实践
    本文探讨了如何在Android项目中集成JUnit进行单元测试,并详细介绍了修改AndroidManifest.xml文件以支持测试的方法。 ... [详细]
  • 如何高效解决Android应用ANR问题?
    本文介绍了ANR(应用程序无响应)的基本概念、常见原因及其解决方案,并提供了实用的工具和技巧帮助开发者快速定位和解决ANR问题,提高应用的用户体验。 ... [详细]
  • 本文介绍了实时流协议(RTSP)的基本概念、组成部分及其与RTCP的交互过程,详细解析了客户端请求格式、服务器响应格式、常用方法分类及协议流程,并提供了SDP格式的深入解析。 ... [详细]
  • RTThread线程间通信
    线程中通信在裸机编程中,经常会使用全局变量进行功能间的通信,如某些功能可能由于一些操作而改变全局变量的值,另一个功能对此全局变量进行读取& ... [详细]
author-avatar
似懂非懂2502904027
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有