热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Hive和JavaAPI操作HBase实践

本博客采用创作共用版权协议,要求署名、非商业用途和保持一致.转载本博客文章必须也遵循署名-非商业用途-保持一致的创作共用协议.由于五一假期,成文较为简略,一些细节部分并没有详细介绍

本博客采用创作共用版权协议, 要求署名、非商业用途和保持一致. 转载本博客文章必须也遵循署名-非商业用途-保持一致的创作共用协议.

由于五一假期, 成文较为简略, 一些细节部分并没有详细介绍, 如有需求, 可以参考之前几篇相当MapRuduce主题的博文.

HBase实践
  • 修改MapReduce阶段倒排索引的信息通过文件输出, 而每个词极其对应的平均出现次数信息写入到Hbase的表Wuxia中(具体的要求可以查看之前的博文MapReduce实战之倒排索引)
  • 编写Java程序, 遍历上一步保存在HBase中的表, 并把表格的内容保存到本地文件中.
  • Hive使用Hive Shell命令行创建表(表名: Wuxia, (word string, count double)), 导入平均出现次数的数据
    • 查询出现次数大于300的词语
    • 查询前100个出现次数最多的数

import java.io.IOException;
import java.nio.ByteBuffer;
import java.util.StringTokenizer;
import java.util.Iterator;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.Reducer.Context;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.hadoop.hbase.HTableDescriptor;
import org.apache.hadoop.hbase.client.HBaseAdmin;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.mapreduce.TableOutputFormat;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.hbase.io.*;
import org.apache.hadoop.hbase.util.Bytes;
public class InvertedIndexHbase {
//创建表并进行简单配置
public static void createHBaseTable(Configuration conf, String tablename) throws IOException {
// HBaseConfiguration cOnfiguration= new HBaseConfiguration();
HBaseAdmin admin = new HBaseAdmin(conf);
if (admin.tableExists(tablename)) { //如果表已经存在
System.out.println("table exits, Trying recreate table!");
admin.disableTable(tablename);
admin.deleteTable(tablename);
}
HTableDescriptor htd = new HTableDescriptor(tablename); //row
HColumnDescriptor col = new HColumnDescriptor("content"); //列族
htd.addFamily(col); //创建列族
System.out.println("Create new table: " + tablename);
admin.createTable(htd); //创建表
}
//map函数不变
public static class Map
extends Mapper {
private Text keyWord = new Text();
private Text valueDocCount = new Text();
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
//获取文档
FileSplit fileSplit = (FileSplit)context.getInputSplit();
String fileName = fileSplit.getPath().getName();
StringTokenizer itr = new StringTokenizer(value.toString());
while(itr.hasMoreTokens()) {
keyWord.set(itr.nextToken() + ":" + fileName); // key为key#doc
valueDocCount.set("1"); // value为词频
context.write(keyWord, valueDocCount);
}
}
}
//combine函数不变
public static class InvertedIndexCombiner
extends Reducer {
private Text wordCount = new Text();
private Text wordDoc = new Text();
//将key-value转换为word-doc:词频
public void reduce(Text key, Iterable values,
Context context) throws IOException, InterruptedException {
int sum = 0;
for (Text value : values) {
sum += Integer.parseInt(value.toString());
}
int splitIndex = key.toString().indexOf(":"); // 找到:的位置
wordDoc.set(key.toString().substring(0, splitIndex)); //key变为单词
wordCount.set(sum + ""); //value变为doc:词频
context.write(wordDoc, wordCount);
}
}
//reduce将数据存入HBase
public static class Reduce
extends TableReducer {
private Text temp = new Text();
public void reduce(Text key, Iterable values,
Context context) throws IOException, InterruptedException {
int sum = 0;
int count = 0;
Iterator it = values.iterator();
//形成最终value
for(;it.hasNext();) {
count++;
temp.set(it.next());
sum += Integer.parseInt(temp.toString());
}
float averageCount = (float)sum / (float)count;
FloatWritable average = new FloatWritable(averageCount);
//加入row为key.toString()
Put put = new Put(Bytes.toBytes(key.toString())); //Put实例, 每一词存一行
//列族为content, 列修饰符为average表示平均出现次数, 列值为平均出现次数
put.add(Bytes.toBytes("content"), Bytes.toBytes("average"), Bytes.toBytes(average.toString()));
context.write(NullWritable.get(), put);
}
}
public static void main(String[] args) throws Exception {
String tablename = "Wuxia";
Configuration cOnf= HBaseConfiguration.create();
conf.set(TableOutputFormat.OUTPUT_TABLE, tablename);
createHBaseTable(conf, tablename);
Job job = Job.getInstance(conf, "Wuxia"); //配置作业名
//配置作业的各个类
job.setJarByClass(InvertedIndexHbase.class);
job.setMapperClass(Map.class);
job.setCombinerClass(InvertedIndexCombiner.class);
job.setReducerClass(Reduce.class);
// TableMapReduceUtil.initTableReducerJob(tablename, Reduce.class, job);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
job.setOutputFormatClass(TableOutputFormat.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

然后在Hadoop执行操作.

$ hdfs dfs -mkdir /user
$ hdfs dfs -mkdir /user/input
$ hdfs dfs -put /Users/andrew_liu/Java/Hadoop/wuxia_novels/* /user/input
$ hadoop jar WorkSpace/InvertedIndexHbase.jar InvertedIndexHbase /user/input output1

执行成功结束后, 打开HBase Shell的操作

$ hbase shell
> scan 'Wuxia'
HBase中数据写入本地文件

import java.io.FileWriter;
import java.io.IOException;
import java.io.FileWriter;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.PrintWriter;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.KeyValue;
import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.HBaseAdmin;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.client.ResultScanner;
import org.apache.hadoop.hbase.util.Bytes;
public class Hbase2Local {
static Configuration cOnf= HBaseConfiguration.create();
public static void getResultScan(String tableName, String filePath) throws IOException {
Scan scan = new Scan();
ResultScanner rs = null;
HTable table = new HTable(conf, Bytes.toBytes(tableName));
try {
rs = table.getScanner(scan);
FileWriter fos = new FileWriter(filePath, true);
for (Result r : rs) {
// System.out.println("获得rowkey: " + new String(r.getRow()));
for (KeyValue kv : r.raw()) {
// System.out.println("列: " + new String(kv.getFamily()) + " 值: " + new String(kv.getValue()));
String s = new String(r.getRow() + "\t" + kv.getValue() + "\n");
fos.write(s);
}
}
fos.close();
} catch (IOException e) {
// TODO: handle exception
e.printStackTrace();
}
rs.close();
}
public static void main(String[] args) throws Exception {
String tableName = "Wuxia";
String filePath = "/Users/andrew_liu/Java/WorkSpace/Hbaes2Local/bin/Wuxia";
getResultScan(tableName, filePath);
}
}
Hive实践

将本地数据导入Hive

hive> create table Wuxia(word string, count double) row format delimited fields terminated by '\t' stored as textfile;
Time taken: 0.049 seconds
hive> load data local inpath '/Users/andrew_liu/Downloads/Wuxia.txt' into table Wuxia;
Loading data to table default.wuxia
Table default.wuxia stats: [numFiles=1, totalSize=2065188]
OK
Time taken: 0.217 seconds

输出出现次数大于300的词语

select * from Wuxia order by count desc limit 100;

推荐阅读
  • Presto:高效即席查询引擎的深度解析与应用
    本文深入解析了Presto这一高效的即席查询引擎,详细探讨了其架构设计及其优缺点。Presto通过内存到内存的数据处理方式,显著提升了查询性能,相比传统的MapReduce查询,不仅减少了数据传输的延迟,还提高了查询的准确性和效率。然而,Presto在大规模数据处理和容错机制方面仍存在一定的局限性。本文还介绍了Presto在实际应用中的多种场景,展示了其在大数据分析领域的强大潜力。 ... [详细]
  • 动态壁纸 LiveWallPaper:让您的桌面栩栩如生(第二篇)
    在本文中,我们将继续探讨如何开发动态壁纸 LiveWallPaper,使您的桌面更加生动有趣。作为 2010 年 Google 暑期大学生博客分享大赛 Android 篇的一部分,我们将详细介绍 Ed Burnette 的《Hello, Android》第三版中的相关内容,并分享一些实用的开发技巧和经验。通过本篇文章,您将了解到如何利用 Android SDK 创建引人入胜的动态壁纸,提升用户体验。 ... [详细]
  • HBase Java API 进阶:过滤器详解与应用实例
    本文详细探讨了HBase 1.2.6版本中Java API的高级应用,重点介绍了过滤器的使用方法和实际案例。首先,文章对几种常见的HBase过滤器进行了概述,包括列前缀过滤器(ColumnPrefixFilter)和时间戳过滤器(TimestampsFilter)。此外,还详细讲解了分页过滤器(PageFilter)的实现原理及其在大数据查询中的应用场景。通过具体的代码示例,读者可以更好地理解和掌握这些过滤器的使用技巧,从而提高数据处理的效率和灵活性。 ... [详细]
  • Vuforia 开发指南:第二章 环境配置与搭建
    本章节详细介绍了如何在Vuforia官网上完成账号注册及环境配置。首先,访问Vuforia官方网站并点击“Register”按钮,按照提示填写必要的个人信息。提交表单后,系统将验证信息并创建账户。接下来,用户需要下载并安装Vuforia开发工具,确保开发环境的顺利搭建。此外,还提供了详细的配置步骤和常见问题的解决方案,帮助开发者快速上手。 ... [详细]
  • 2012年9月12日优酷土豆校园招聘笔试题目解析与备考指南
    2012年9月12日,优酷土豆校园招聘笔试题目解析与备考指南。在选择题部分,有一道题目涉及中国人的血型分布情况,具体为A型30%、B型20%、O型40%、AB型10%。若需确保在随机选取的样本中,至少有一人为B型血的概率不低于90%,则需要选取的最少人数是多少?该问题不仅考察了概率统计的基本知识,还要求考生具备一定的逻辑推理能力。 ... [详细]
  • 本文探讨了Android系统中支持的图像格式及其在不同版本中的兼容性问题,重点涵盖了存储、HTTP传输、相机功能以及SparseArray的应用。文章详细分析了从Android 10 (API 29) 到Android 11 的存储规范变化,并讨论了这些变化对图像处理的影响。此外,还介绍了如何通过系统升级和代码优化来解决版本兼容性问题,以确保应用程序在不同Android版本中稳定运行。 ... [详细]
  • 如何高效启动大数据应用之旅?
    在前一篇文章中,我探讨了大数据的定义及其与数据挖掘的区别。本文将重点介绍如何高效启动大数据应用项目,涵盖关键步骤和最佳实践,帮助读者快速踏上大数据之旅。 ... [详细]
  • Hadoop 2.6 主要由 HDFS 和 YARN 两大部分组成,其中 YARN 包含了运行在 ResourceManager 的 JVM 中的组件以及在 NodeManager 中运行的部分。本文深入探讨了 Hadoop 2.6 日志文件的解析方法,并详细介绍了 MapReduce 日志管理的最佳实践,旨在帮助用户更好地理解和优化日志处理流程,提高系统运维效率。 ... [详细]
  • 在项目开发过程中,掌握一些关键的Linux命令至关重要。例如,使用 `Ctrl+C` 可以立即终止当前正在执行的命令;通过 `ps -ef | grep ias` 可以查看特定服务的进程信息,包括进程ID(PID)和JVM参数(如内存分配和远程连接端口);而 `netstat -apn | more` 则用于显示网络连接状态,帮助开发者监控和调试网络服务。这些命令不仅提高了开发效率,还能有效解决运行时的各种问题。 ... [详细]
  • 在Hive中合理配置Map和Reduce任务的数量对于优化不同场景下的性能至关重要。本文探讨了如何控制Hive任务中的Map数量,分析了当输入数据超过128MB时是否会自动拆分,以及Map数量是否越多越好的问题。通过实际案例和实验数据,本文提供了具体的配置建议,帮助用户在不同场景下实现最佳性能。 ... [详细]
  • HBase在金融大数据迁移中的应用与挑战
    随着最后一台设备的下线,标志着超过10PB的HBase数据迁移项目顺利完成。目前,新的集群已在新机房稳定运行超过两个月,监控数据显示,新集群的查询响应时间显著降低,系统稳定性大幅提升。此外,数据消费的波动也变得更加平滑,整体性能得到了显著优化。 ... [详细]
  • 技术日志:深入探讨Spark Streaming与Spark SQL的融合应用
    技术日志:深入探讨Spark Streaming与Spark SQL的融合应用 ... [详细]
  • 在Linux系统中,原本已安装了多个版本的Python 2,并且还安装了Anaconda,其中包含了Python 3。本文详细介绍了如何通过配置环境变量,使系统默认使用指定版本的Python,以便在不同版本之间轻松切换。此外,文章还提供了具体的实践步骤和注意事项,帮助用户高效地管理和使用不同版本的Python环境。 ... [详细]
  • 本文整理了Java中org.apache.hadoop.mapreduce.lib.input.MultipleInputs.addInputPath()方法的一些代码 ... [详细]
  • hive和mysql的区别是什么[mysql教程]
    hive和mysql的区别有:1、查询语言不同,hive是hql语言,MySQL是sql语句;2、数据存储位置不同,hive把数据存储在hdfs上,MySQL把数据存储在自己的系统 ... [详细]
author-avatar
菠萝和尚
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有