图像梯度、图像边缘、USM锐化图像梯度、图像边缘、USM锐化图像梯度、图像边缘、USM锐化
图像卷积:
1.模糊
2.梯度
3.边缘
4.锐化
1.视频教程:
B站、网易云课堂、腾讯课堂
2.代码地址:
Gitee
Github
3.存储地址:
Google云
百度云:
提取码:
1.图像梯度
1.1 梯度算子
利用梯度算子进行梯度的计算
常见的图像梯度算子
Sobel、Scharr算子,计算x和y方向的差异
一阶导数算子
#include
#include using namespace cv;
using namespace std;int main(int argc, char** argv) {Mat src &#61; imread("E:/cats.jpg", IMREAD_COLOR);if (src.empty()) {printf("image is empty!!!");return -1;}imshow("src", src);Mat robot_x &#61; (Mat_ <int>(2, 2) << 1, 0, 0, -1);Mat robot_y &#61; (Mat_ <int>(2, 2) << 0, 1, -1, 0);Mat grad_x,grad_y;filter2D(src, grad_x, CV_32F, robot_x, Point(-1, -1), 0, BORDER_DEFAULT);filter2D(src, grad_y, CV_32F, robot_y, Point(-1, -1), 0, BORDER_DEFAULT);convertScaleAbs(grad_x, grad_x);convertScaleAbs(grad_y, grad_y);Mat result;add(grad_x, grad_y, result);imshow("robot gradient", result);waitKey(0);destroyAllWindows();return 0;
}
#include
#include using namespace cv;
using namespace std;int main(int argc, char** argv) {Mat src &#61; imread("E:/cats.jpg", IMREAD_COLOR);if (src.empty()) {printf("image is empty!!!");return -1;}imshow("src", src);Mat robot_x &#61; (Mat_ <int>(2, 2) << 1, 0, 0, -1);Mat robot_y &#61; (Mat_ <int>(2, 2) << 0, 1, -1, 0);Mat grad_x,grad_y;filter2D(src, grad_x, CV_32F, robot_x, Point(-1, -1), 0, BORDER_DEFAULT);filter2D(src, grad_y, CV_32F, robot_y, Point(-1, -1), 0, BORDER_DEFAULT);convertScaleAbs(grad_x, grad_x);convertScaleAbs(grad_y, grad_y);Mat result;add(grad_x, grad_y, result);imshow("robot gradient", result);Sobel(src, grad_x, CV_32F, 1, 0);Sobel(src, grad_y, CV_32F, 0, 1);convertScaleAbs(grad_x, grad_x);convertScaleAbs(grad_y, grad_y);Mat result2;addWeighted(grad_x, 0.5, grad_y, 0.5, 0, result2);imshow("sobel gradient", result2);Scharr(src, grad_x, CV_32F, 1, 0);Scharr(src, grad_y, CV_32F, 0, 1);convertScaleAbs(grad_x, grad_x);convertScaleAbs(grad_y, grad_y);Mat result3;addWeighted(grad_x, 0.5, grad_y, 0.5, 0, result3);imshow("Scharr gradient", result3);waitKey(0);destroyAllWindows();return 0;
}
2.图像边缘
2.1 二阶导数算子
锐化的常用梯度算子&#xff1a;拉普拉斯算子
#include
#include using namespace cv;
using namespace std;int main(int argc, char** argv) {Mat src &#61; imread("E:/cats.jpg", IMREAD_COLOR);if (src.empty()) {printf("image is empty!!!");return -1;}imshow("src", src);Mat dst;Laplacian(src, dst, -1, 3, 1.0, 0, BORDER_DEFAULT);imshow("laplacian", dst);waitKey(0);destroyAllWindows();return 0;
}
#include
#include using namespace cv;
using namespace std;int main(int argc, char** argv) {Mat src &#61; imread("E:/cats.jpg", IMREAD_COLOR);if (src.empty()) {printf("image is empty!!!");return -1;}imshow("src", src);Mat dst;Laplacian(src, dst, -1, 3, 1.0, 0, BORDER_DEFAULT);imshow("laplacian", dst);Mat sh_op &#61; (Mat_ <int>(3,3) <<0,-1,0,-1,5,-1,0,-1,0);Mat result;filter2D(src, result, CV_32F, sh_op, Point(-1, -1), 0, BORDER_DEFAULT);convertScaleAbs(result, result);imshow("sharpen",result);waitKey(0);destroyAllWindows();return 0;
}
拉普拉斯容易被噪声影响&#xff0c;所以在使用之前&#xff0c;需要进行去噪
3.USM锐化
#include
#include using namespace cv;
using namespace std;int main(int argc, char** argv) {Mat src &#61; imread("E:/cats.jpg", IMREAD_COLOR);if (src.empty()) {printf("image is empty!!!");return -1;}imshow("src", src);Mat blur_image, dst;GaussianBlur(src, blur_image, Size(3, 3), 0);Laplacian(src, dst, -1, 3, 1.0, 0, BORDER_DEFAULT);imshow("laplacian", dst);Mat usm_image;addWeighted(blur_image, 1.0, dst, -1.0, 0, usm_image);imshow("usm filter", usm_image);waitKey(0);destroyAllWindows();return 0;
}