热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Hadoop之Hive架构与设计

Hadoop之Hive架构与设计Hadoop是一个能够对大量数据进行分布式处理的软件框架。具有可靠、高效、可伸缩的特点。HDFS:全称为Hadoop分布式文件系统&

Hadoop之Hive架构与设计

Hadoop是一个能够对大量数据进行分布式处理的软件框架。具有可靠、高效、可伸缩的特点。

 

 

  • HDFS:全称为Hadoop分布式文件系统(Hadoop Distributed File System),提供了高吞吐量的访问应用程序数据。

  • Hadoop YARN:Hadoop集群资源管理框架(Yet Another Resource Negotiator),用于作业调度和集群资源管理。

  • Hadoop MapReduce:基于YARN的大数据集的并行处理系统。

  • Hadoop Common:支持其他Hadoop模块的通用功能,包括序列化、Java RPC和持久化数据结构等。

  • Ambari:是一个部署、管理和监视Apache Hadoop集群的开源框架。

  • Hbase:可扩展的分布式列式数据库,支持大表的结构化存储。

  • Hive:分布式数据仓库系统,提供基于类SQL的查询语言。

  • Mathout:机器学习和数据挖掘领域经典算法的实现。

  • Pig:一个高级数据流语言和执行环境,用来检索海量数据集。

  • Spark:一个快速和通用的计算引擎。Spark提供了一个简单而富有表现力的编程模型,支持多种应用,包括ETL、机器学习、数据流处理和图形计算。

  • Sqoop:在关系型数据库与Hadoop系统之间进行数据传输的工具。

  • Tez:是从MapReduce计算框架演化而来的通用DAG计算框架,可作为MapReduce/Pig/Hive等系统的底层数据处理引擎,它天生融入Hadoop2.0的资源管理平台YARN。

  • Zookeeper:提供Hadoop集群高性能的分布式的协调服务。


以下就Hive展开进行详解。

一、Hive简介

Hive是Apache Hadoop的正式子项目,可以将结构化的数据文件映射为一张数据库表,并提供简单的SQL查询功能,可以将SQL语句转换为MapReduce任务进行运行。其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。

Hive是建立在Hadoop上的数据仓库基础构架。它提供了一系列的工具,可以用来进行数据提取转化加载(ETL),这是一种可以在Hadoop中对大规模数据进行存储、查询和分析的机制。Hive定义了简单的类SQL查询语言,称为HQL,它允许熟悉SQL的用户方便地查询数据。同时,这个语言也允许熟悉MapReduce的开发者定制自定义的Mapper和Reducer,以便处理内建Mapper/Reducer无法完成的复杂分析工作。

二、Hive体系架构

Hive系统总体上分为以下几个部分。

UI:用户提交查询请求与获得查询结果。其包括三个接口:命令行(CLI)、Web GUI和客户端;

Driver:接受查询请求,经过处理后返回查询结果。核心组件,整个Hive的核心,该组件包括Complier(编译器)、Optimizer(优化器)和Executor(执行器),它们的作用是对Hive SQL语句进行解析、编译优化,生成执行计划,然后调用底层的MapReduce计算框架;

Compiler:编译器,分析查询SQL语句,在不同的查询块和查询表达式上进行语义分析,并最终通过从Metastore中查找表与分区的元信息生成执行计划;

Execution Engine:执行引擎,执行由Compiler创建的执行计划,执行引擎管理不同阶段的依赖关系,通过MapReuce执行这些阶段;

Metastore:元数据储存,元数据存储在MySQL或derby等数据库中。元数据包括Hive各种表与分区的结构化信息,列与列类型信息,序列化器与反序列化器等,从而能够读写HDFS中的数据。

三、Hive数据模型

Hive的数据模型包括database、table、partition和bucket。

(1)Database:相当于关系数据库里的命名空间(NameSpace),它的作用是将用户和数据库的应用隔离到不同的数据库或模式中,Hive提供了createdatabase dbname、use dbname以及drop database dbname这样的语句。

(2)表(table):Hive的表逻辑上由存储的数据和描述表格中的数据形式的相关元数据组成。表存储的数据存放在分布式文件系统里,例如HDFS,元数据存储在关系数据库里,当我们创建一张Hive的表,还没有为表加载数据的时候,该表在分布式文件系统,例如HDFS上就是一个文件夹(文件目录)。Hive里的表有两种类型,一种叫托管表,这种表的数据文件存储在Hive的数据仓库里;一种叫外部表,这种表的数据文件可以存放在Hive数据仓库外部的分布式文件系统上,也可以放到Hive数据仓库里(注意:Hive的数据仓库就是hdfs上的一个目录,这个目录是Hive数据文件存储的默认路径,它可以在Hive的配置文件里进行配置,最终也会存放到元数据库里)。

(3)桶(bucket):分桶是将数据集分解成更容易管理的若干部分的另一个技术,上面的table和partition都是目录级别的拆分数据,bucket则是对数据源数据文件本身来拆分数据。使用桶的表会将源数据文件按一定规律拆分成多个文件。

四、Hive优缺点


  • 优点



  1. 操作接口采用类SQL语法,提供快速开发的能力(简单、容易上手)。

  2. 避免了去写MapReduce,减少开发人员的学习成本。

  3. Hive的执行延迟比较高,因此Hive常用于数据分析,对实时性要求不高的场合。

  4. Hive优势在于处理大数据,对于处理小数据没有优势,因为Hive的执行延迟比较高。

  5. Hive支持用户自定义函数,用户可以根据自己的需求来实现自己的函数。



  • 缺点



  1. Hive的HQL表达能力有限

    (1)迭代式算法无法表达,表达能力有限(复杂的逻辑算法不好封装)
    (2)数据挖掘方面不擅长,由于MapReduce数据处理流程的限制(比较慢,因为底层的缺点也都还在),效率更高的算法却无法实现。

  2. Hive的效率比较低
    (1)Hive自动生成的MapReduce作业,通常情况下不够智能化(机器翻译比较死板,可能不是最优解,但是一定可以实现)
    (2)Hive调优比较困难,粒度较粗(只能在框架的基础上优化,不能深入底层MR程序优化)


五、Hive应用场景

Hive提供数据提取、转换、加载功能,并可用类似于SQL的语法,对HDFS海量数据库中的数据进行查询、统计等操作。形象地说,Hive更像一个数据仓库管理工具,适用于结构化数据的应用,读多写少的应用,响应时间要求不高的场合。Hive常用于以下几个方面:

(1)数据汇总(每天/每周用户点击数,点击排行);

(2)非实时分析(日志分析,统计分析);

(3)数据挖掘(用户行为分析,兴趣分区,区域展示)。


推荐阅读
  • Zookeeper作为Apache Hadoop生态系统中的一个重要组件,主要致力于解决分布式应用中的常见数据管理难题。它提供了统一的命名服务、状态同步服务以及集群管理功能,有效提升了分布式系统的可靠性和可维护性。此外,Zookeeper还支持配置管理和临时节点管理,进一步增强了其在复杂分布式环境中的应用价值。 ... [详细]
  • HBase在金融大数据迁移中的应用与挑战
    随着最后一台设备的下线,标志着超过10PB的HBase数据迁移项目顺利完成。目前,新的集群已在新机房稳定运行超过两个月,监控数据显示,新集群的查询响应时间显著降低,系统稳定性大幅提升。此外,数据消费的波动也变得更加平滑,整体性能得到了显著优化。 ... [详细]
  • 从理想主义者的内心深处萌发的技术信仰,推动了云原生技术在全球范围内的快速发展。本文将带你深入了解阿里巴巴在开源领域的贡献与成就。 ... [详细]
  • 流处理中的计数挑战与解决方案
    本文探讨了在流处理中进行计数的各种技术和挑战,并基于作者在2016年圣何塞举行的Hadoop World大会上的演讲进行了深入分析。文章不仅介绍了传统批处理和Lambda架构的局限性,还详细探讨了流处理架构的优势及其在现代大数据应用中的重要作用。 ... [详细]
  • 深入解析:存储技术的演变与发展
    本文探讨了从单机文件系统到分布式文件系统的存储技术发展过程,详细解释了各种存储模型及其特点。 ... [详细]
  • 本文介绍了Hadoop的核心组件,包括高可靠性和高吞吐量的分布式文件系统HDFS、分布式的离线并行计算框架MapReduce、作业调度与集群资源管理框架YARN以及支持其他模块的工具模块Common。 ... [详细]
  • 大数据领域的职业路径与角色解析
    本文将深入探讨大数据领域的各种职业和工作角色,帮助读者全面了解大数据行业的需求、市场趋势,以及从入门到高级专业人士的职业发展路径。文章还将详细介绍不同公司对大数据人才的需求,并解析各岗位的具体职责、所需技能和经验。 ... [详细]
  • 本文详细介绍了 Spark 中的弹性分布式数据集(RDD)及其常见的操作方法,包括 union、intersection、cartesian、subtract、join、cogroup 等转换操作,以及 count、collect、reduce、take、foreach、first、saveAsTextFile 等行动操作。 ... [详细]
  • Hadoop的文件操作位于包org.apache.hadoop.fs里面,能够进行新建、删除、修改等操作。比较重要的几个类:(1)Configurati ... [详细]
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • 从0到1搭建大数据平台
    从0到1搭建大数据平台 ... [详细]
  • 在搭建Hadoop集群以处理大规模数据存储和频繁读取需求的过程中,经常会遇到各种配置难题。本文总结了作者在实际部署中遇到的典型问题,并提供了详细的解决方案,帮助读者避免常见的配置陷阱。通过这些经验分享,希望读者能够更加顺利地完成Hadoop集群的搭建和配置。 ... [详细]
  • Hadoop 2.6 主要由 HDFS 和 YARN 两大部分组成,其中 YARN 包含了运行在 ResourceManager 的 JVM 中的组件以及在 NodeManager 中运行的部分。本文深入探讨了 Hadoop 2.6 日志文件的解析方法,并详细介绍了 MapReduce 日志管理的最佳实践,旨在帮助用户更好地理解和优化日志处理流程,提高系统运维效率。 ... [详细]
  • 构建高可用性Spark分布式集群:大数据环境下的最佳实践
    在构建高可用性的Spark分布式集群过程中,确保所有节点之间的无密码登录是至关重要的一步。通过在每个节点上生成SSH密钥对(使用 `ssh-keygen -t rsa` 命令并保持默认设置),可以实现这一目标。此外,还需将生成的公钥分发到所有节点的 `~/.ssh/authorized_keys` 文件中,以确保节点间的无缝通信。为了进一步提升集群的稳定性和性能,建议采用负载均衡和故障恢复机制,并定期进行系统监控和维护。 ... [详细]
  • 本文详细介绍了HDFS的基础知识及其数据读写机制。首先,文章阐述了HDFS的架构,包括其核心组件及其角色和功能。特别地,对NameNode进行了深入解析,指出其主要负责在内存中存储元数据、目录结构以及文件块的映射关系,并通过持久化方案确保数据的可靠性和高可用性。此外,还探讨了DataNode的角色及其在数据存储和读取过程中的关键作用。 ... [详细]
author-avatar
金berends_941
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有