热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

哈工大中文信息处理_哈工大讯飞联合实验室发布基于全词覆盖的中文BERT预训练模型...

为了进一步促进中文自然语言处理的研究发展,哈工大讯飞联合实验室发布基于全词覆盖(WholeWordMasking)的中文BERT预训练模型。我们在多个中文数据集上得到

0b34ea3f2c02afb23aa842564b236806.png为了进一步促进中文自然语言处理的研究发展,哈工大讯飞联合实验室发布基于全词覆盖(Whole Word Masking)的中文BERT预训练模型。我们在多个中文数据集上得到了较好的结果,覆盖了句子级到篇章级任务。同时,我们对现有的中文预训练模型进行了对比,并且给出了若干使用建议。我们欢迎大家下载试用。

下载地址:https://github.com/ymcui/Chinese-BERT-wwm

技术报告:https://arxiv.org/abs/1906.08101

01a76eada6eefb57a2b0c72e54271ca9.png

摘要

基于Transformers的双向编码表示(BERT)在多个自然语言处理任务中取得了广泛的性能提升。近期,谷歌发布了基于全词覆盖(Whold Word Masking)的BERT预训练模型,并且在SQuAD数据中取得了更好的结果。应用该技术后,在预训练阶段,同属同一个词的WordPiece会被全部覆盖掉,而不是孤立的覆盖其中的某些WordPiece,进一步提升了Masked Language Model (MLM)的难度。在本文中我们将WWM技术应用在了中文BERT中。我们采用中文维基百科数据进行了预训练。该模型在多个自然语言处理任务中得到了测试和验证,囊括了句子级到篇章级任务,包括:情感分类,命名实体识别,句对分类,篇章分类,机器阅读理解。实验结果表明,基于全词覆盖的中文BERT能够带来进一步性能提升。同时我们对现有的中文预训练模型BERT,ERNIE和本文的BERT-wwm进行了对比,并给出了若干使用建议。预训练模型将发布在:https://github.com/ymcui/Chinese-BERT-wwm

简介

Whole Word Masking (wwm),暂翻译为全词Mask,是谷歌在2019年5月31日发布的一项BERT的升级版本,主要更改了原预训练阶段的训练样本生成策略。简单来说,原有基于WordPiece的分词方式会把一个完整的词切分成若干个词缀,在生成训练样本时,这些被分开的词缀会随机被[MASK]替换。在全词Mask中,如果一个完整的词的部分WordPiece被[MASK]替换,则同属该词的其他部分也会被[MASK]替换,即全词Mask。

同理,由于谷歌官方发布的BERT-base(Chinese)中,中文是以字为粒度进行切分,没有考虑到传统NLP中的中文分词(CWS)。我们将全词Mask的方法应用在了中文中,即对组成同一个词的汉字全部进行[MASK]。该模型使用了中文维基百科(包括简体和繁体)进行训练,并且使用了哈工大语言技术平台LTP(http://ltp.ai)作为分词工具。

下述文本展示了全词Mask的生成样例。

cd5d74d0cf36587bd1f2d16be78ba1a7.png

基线测试结果

我们选择了若干中文自然语言处理数据集来测试和验证预训练模型的效果。同时,我们也对近期发布的谷歌BERT,百度ERNIE进行了基准测试。为了进一步测试这些模型的适应性,我们特别加入了篇章级自然语言处理任务,来验证它们在长文本上的建模效果。

以下是我们选用的基准测试数据集。

5e0346c3cfa8ed16b37c8812e5d70b07.png

我们列举其中部分实验结果,完整结果请查看我们的技术报告。为了确保结果的稳定性,每组实验均独立运行10次,汇报性能最大值和平均值(括号内显示)。

中文简体阅读理解:CMRC 2018

CMRC 2018是哈工大讯飞联合实验室发布的中文机器阅读理解数据。根据给定问题,系统需要从篇章中抽取出片段作为答案,形式与SQuAD相同。

f904ec9c9f401f79bc3357921ced0b82.png

中文繁体阅读理解:DRCD

DRCD数据集由中国台湾台达研究院发布,其形式与SQuAD相同,是基于繁体中文的抽取式阅读理解数据集。

474506f28abfda3e5f22ffa7193bfa80.png

中文命名实体识别:人民日报,MSRA-NER

中文命名实体识别(NER)任务中,我们采用了经典的人民日报数据以及微软亚洲研究院发布的NER数据。

5678dae856989c87c3652ff0d2b6fa21.png

句对分类:LCQMC,BQ Corpus

LCQMC以及BQ Corpus是由哈尔滨工业大学(深圳)发布的句对分类数据集。

a6663c053465777c9a73186e292d9921.png

篇章级文本分类:THUCNews

由清华大学自然语言处理实验室发布的新闻数据集,需要将新闻分成10个类别中的一个。

33f97809aac271e66a67a78bbbac7edf.png

使用建议

基于以上实验结果,我们给出以下使用建议(部分),完整内容请查看我们的技术报告。

  • 初始学习率是非常重要的一个参数(不论是BERT还是其他模型),需要根据目标任务进行调整。

  • ERNIE的最佳学习率和BERT/BERT-wwm相差较大,所以使用ERNIE时请务必调整学习率(基于以上实验结果,ERNIE需要的初始学习率较高)。

  • 由于BERT/BERT-wwm使用了维基百科数据进行训练,故它们对正式文本建模较好;而ERNIE使用了额外的百度百科、贴吧、知道等网络数据,它对非正式文本(例如微博等)建模有优势。

  • 在长文本建模任务上,例如阅读理解、文档分类,BERT和BERT-wwm的效果较好。

  • 如果目标任务的数据和预训练模型的领域相差较大,请在自己的数据集上进一步做预训练。

  • 如果要处理繁体中文数据,请使用BERT或者BERT-wwm。因为我们发现ERNIE的词表中几乎没有繁体中文。

声明

虽然我们极力的争取得到稳定的实验结果,但实验中难免存在多种不稳定因素(随机种子,计算资源,超参),故以上实验结果仅供学术研究参考。由于ERNIE的原始发布平台是PaddlePaddle(https://github.com/PaddlePaddle/LARK/tree/develop/ERNIE),我们无法保证在本报告中的效果能反映其真实性能(虽然我们在若干数据集中复现了效果)。同时,上述使用建议仅供参考,不能作为任何结论性依据。

该项目不是谷歌官方发布的中文Whole Word Masking预训练模型。

总结

我们发布了基于全词覆盖的中文BERT预训练模型,并在多个自然语言处理数据集上对比了BERT、ERNIE以及BERT-wwm的效果。实验结果表明,在大多数情况下,采用了全词覆盖的预训练模型(ERNIE,BERT-wwm)能够得到更优的效果。由于这些模型在不同任务上的表现不一致,我们也给出了若干使用建议,并且希望能够进一步促进中文信息处理的研究与发展。

点击“阅读原文”即可一键直达技术报告。

47156b9dc93a11c526f4c3a2f28cabfe.gif

 原文、编辑:HFL编辑部

fc5da6f32cb3e4f6e0db808426fbaf86.png

914c58c69d82113a934b00902fec1266.png




推荐阅读
  • 如何在jieba分词中加自定义词典_常见中文分词包比较
    1jiebajieba.cut方法接受三个输入参数:需要分词的字符串;cut_all参数用来控制是否采用全模式;HMM参数用来控制是否使用HMM模型ji ... [详细]
  • CCF 100w+奖池大赛启动!百度高级工程师带你玩转NLP 、CV赛题!
    2021年大数据与AI领域年度盛事——第九届CCF大数据与计算智能大赛已开赛近一个月,你的队伍是否已荣登top榜!百度发布NLP领域“千言-问题匹配鲁棒 ... [详细]
  • 如何使用 net.sf.extjwnl.data.Word 类及其代码示例详解 ... [详细]
  • 表面缺陷检测数据集综述及GitHub开源项目推荐
    本文综述了表面缺陷检测领域的数据集,并推荐了多个GitHub上的开源项目。通过对现有文献和数据集的系统整理,为研究人员提供了全面的资源参考,有助于推动该领域的发展和技术进步。 ... [详细]
  • 中文分词_中文分词技术小结几大分词引擎的介绍与比较
    篇首语:本文由编程笔记#小编为大家整理,主要介绍了中文分词技术小结几大分词引擎的介绍与比较相关的知识,希望对你有一定的参考价值。笔者想说:觉得英文与中文分词有很大的区别, ... [详细]
  • GPT-3发布,动动手指就能自动生成代码的神器来了!
    近日,OpenAI发布了最新的NLP模型GPT-3,该模型在GitHub趋势榜上名列前茅。GPT-3使用的数据集容量达到45TB,参数个数高达1750亿,训练好的模型需要700G的硬盘空间来存储。一位开发者根据GPT-3模型上线了一个名为debuid的网站,用户只需用英语描述需求,前端代码就能自动生成。这个神奇的功能让许多程序员感到惊讶。去年,OpenAI在与世界冠军OG战队的表演赛中展示了他们的强化学习模型,在限定条件下以2:0完胜人类冠军。 ... [详细]
  • 本文详细介绍了如何在Linux系统中搭建51单片机的开发与编程环境,重点讲解了使用Makefile进行项目管理的方法。首先,文章指导读者安装SDCC(Small Device C Compiler),这是一个专为小型设备设计的C语言编译器,适合用于51单片机的开发。随后,通过具体的实例演示了如何配置Makefile文件,以实现代码的自动化编译与链接过程,从而提高开发效率。此外,还提供了常见问题的解决方案及优化建议,帮助开发者快速上手并解决实际开发中可能遇到的技术难题。 ... [详细]
  • 2019年斯坦福大学CS224n课程笔记:深度学习在自然语言处理中的应用——Word2Vec与GloVe模型解析
    本文详细解析了2019年斯坦福大学CS224n课程中关于深度学习在自然语言处理(NLP)领域的应用,重点探讨了Word2Vec和GloVe两种词嵌入模型的原理与实现方法。通过具体案例分析,深入阐述了这两种模型在提升NLP任务性能方面的优势与应用场景。 ... [详细]
  • 在Java中,一个类可以实现多个接口,但是否能够继承多个类则存在限制。本文探讨了Java中实现多继承的方法及其局限性,详细分析了通过接口、抽象类和组合等技术手段来模拟多继承的策略,并讨论了这些方法的优势和潜在问题。 ... [详细]
  • AI算法工程师从入门到上瘾
    设定一个非常清晰的目标清晰的目标就比如说你要做NLP,你要知道NLP的应用有智能问答,机器翻译,搜索引擎等等。然后如果你要做智能问答你要知道现在最发达的技术是深度学习,使用的算法有 ... [详细]
  • python 英文关键词提取_如何提取文章的关键词(Python版)
    项目需求:我们采集来的文章没有关键词,在发布的时候无法设定标签,我们通过代码自动提取出文章的关键词,达到对数据加工的目的。 ... [详细]
  • jenkins中 Slave使用Docker
    原因就不说了,网上的自动化测试Docker教程太不靠谱,还是学学官网吧。目的:在现在各种虚拟化的大条件下,还在建立N个节点机 ... [详细]
  • PyTorch 2.0来了!100%向后兼容,一行代码将训练提速76%!
    点击下方卡片,关注“CVer”公众号AICV重磅干货,第一时间送达点击进入—CV微信技术交流群转载自:机器之心PyTorch官方 ... [详细]
  • 知识图谱——机器大脑中的知识库
    本文介绍了知识图谱在机器大脑中的应用,以及搜索引擎在知识图谱方面的发展。以谷歌知识图谱为例,说明了知识图谱的智能化特点。通过搜索引擎用户可以获取更加智能化的答案,如搜索关键词"Marie Curie",会得到居里夫人的详细信息以及与之相关的历史人物。知识图谱的出现引起了搜索引擎行业的变革,不仅美国的微软必应,中国的百度、搜狗等搜索引擎公司也纷纷推出了自己的知识图谱。 ... [详细]
  • 深度学习中的Vision Transformer (ViT)详解
    本文详细介绍了深度学习中的Vision Transformer (ViT)方法。首先介绍了相关工作和ViT的基本原理,包括图像块嵌入、可学习的嵌入、位置嵌入和Transformer编码器等。接着讨论了ViT的张量维度变化、归纳偏置与混合架构、微调及更高分辨率等方面。最后给出了实验结果和相关代码的链接。本文的研究表明,对于CV任务,直接应用纯Transformer架构于图像块序列是可行的,无需依赖于卷积网络。 ... [详细]
author-avatar
捕鱼达人2602881157
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有