热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

HBase查询一张表的数据条数的方法

HBase查询一张表的数据条数的方法文章目录HBase查询一张表的数据条数的方法0、写在前面1、HBase-Shell的count命令2、Scan操作获取数据条数3、执行Mapre




HBase查询一张表的数据条数的方法

文章目录


  • HBase查询一张表的数据条数的方法
    • 0、写在前面
    • 1、HBase-Shell的count命令
    • 2、Scan操作获取数据条数
    • 3、执行Mapreduce任务
    • 4、Hive与HBase整合
    • 5、协处理器Coprocessor实现
    • 6、参考资料





在这里插入图片描述




0、写在前面


  • Linux版本:Ubuntu Kylin 16.04
  • Hadoop版本:Hadoop-2.7.2
  • Zookeeper版本:HBase自带
  • HBase版本:HBase-1.1.5
  • Hive版本:Hive-2.1.0

1、HBase-Shell的count命令

hbase(main):017:0> help 'count'
Count the number of rows in a table. Return value is the number of rows.
This operation may take a LONG time (Run '$HADOOP_HOME/bin/hadoop jar
hbase.jar rowcount' to run a counting mapreduce job). Current count is shown every 1000 rows by default. Count interval may be optionally specified. Scan caching is enabled on count scans by default. Default cache size is 10 rows.If your rows are small in size, you may want to increase this
parameter. Examples:
hbase> count 'ns1:t1'
hbase> count 't1'
hbase> count 't1', INTERVAL => 100000
hbase> count 't1', CACHE => 1000
hbase> count 't1', INTERVAL => 10, CACHE => 1000
The same commands also can be run on a table reference. Suppose you had a reference
t to table 't1', the corresponding commands would be:
hbase> t.count
hbase> t.count INTERVAL => 100000
hbase> t.count CACHE => 1000
hbase> t.count INTERVAL => 10, CACHE => 1000

可以看到「使用count查询表的数据条数」这个操作可能需要消耗过长时间(运行’$HADOOP_HOME/bin/hadoop jar hbase.jar rowcount’ 来运行计数 mapReduce 作业)。

默认情况下,当前计数每 1000 行显示一次。可以选择指定计数间隔。默认情况下,对计数扫描启用扫描缓存。默认缓存大小为 10 行。


2、Scan操作获取数据条数

通过Java API的方式,使用scan进行全表扫描,循环计数RowCount,速度较慢! 但快于第一种count方式!

基本代码如下:

public void rowCountByScanFilter(String tablename){
long rowCount = 0;
try {
// 计时
StopWatch stopWatch = new StopWatch();
stopWatch.start();
TableName name=TableName.valueOf(tablename);
// connection为类静态变量
Table table = connection.getTable(name);
Scan scan = new Scan();
// FirstKeyOnlyFilter只会取得每行数据的第一个kv,提高count速度
scan.setFilter(new FirstKeyOnlyFilter());

ResultScanner rs = table.getScanner(scan);
for (Result result : rs) {
rowCount += result.size();
}
stopWatch.stop();
System.out.println("RowCount: " + rowCount);
System.out.println("统计耗时:" +stopWatch.getTotalTimeMillis());
} catch (Throwable e) {
e.printStackTrace();
}
}

3、执行Mapreduce任务

zhangsan@node01:/usr/local/hbase-1.1.5/bin$ ./hbase org.apache.hadoop.hbase.mapreduce.RowCounter ‘yourtablename’

这种方式效率比第一种要高,调用的HBase jar中自带的统计行数的类。


4、Hive与HBase整合



我们通过建立Hive和HBase关联表的方式,可以直接在Hive中执行sql语句统计出HBase表的行数。



  • 启动hdfs

zhangsan@node01:/usr/local/hadoop-2.7.2/sbin$ ./start-dfs.sh

  • 启动HBase

zhangsan@node01:/usr/local/hbase-1.1.5/bin$ ./start-hbase.sh
zhangsan@node01:/usr/local/hbase/bin$ jps
3648 Jps
2737 DataNode
3555 HRegionServer
2948 SecondaryNameNode
3337 HQuorumPeer
2604 NameNode
3436 HMaster

  • 启动hiveserver2服务

zhangsan@node01:/usr/local/hive-2.1.0/bin$ hiveserver2

  • 启动HBase Shell,建表

zhangsan@node01:/usr/local/hbase-1.1.5/bin$ hbase shell
# HBase 建表
create 'hbase_hive_test', 'cf1'

  • hive建立映射表

zhangsan@node01:/usr/local/hive-2.1.0/bin$ hive

hive>create table hive_hbase_test(key int,value string)
>stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
>with serdeproperties("hbase.columns.mapping"=":key,cf1:val")
>tblproperties("hbase.table.name"="hive_hbase_test");
OK
Time taken: 8.018 seconds

  • 在HBase中查看是否存在映射表

hbase(main):001:0> list
TABLE
hive_hbase_test
1 row(s) in 0.6800 seconds
=> ["hive_hbase_test"]

5、协处理器Coprocessor实现

该方法是目前最快实现「查询一张表的数据条数」的方法



为什么利用协处理器后速度会如此之快?


Table注册了Coprocessor之后,在执行AggregationClient的时候,会将RowCount分散到Table的每一个Region上,Region内RowCount的计算,是通过RPC执行调用接口,由Region对应的RegionServer执行InternalScanner进行的。

因此,性能的提升有两点原因:

1.分布式统计。将原来客户端按照Rowkey的范围单点进行扫描,然后统计的方式,换成了由所有Region所在RegionServer同时计算的过程。

2.使用了在RegionServer内部执行使用了InternalScanner。这是距离实际存储最近的Scanner接口,存取更加快捷。

public void rowCountByCoprocessor(String tablename){
try {
//提前创建connection和conf
Admin admin = connection.getAdmin();
TableName name=TableName.valueOf(tablename);
//先disable表,添加协处理器后再enable表
admin.disableTable(name);
HTableDescriptor descriptor = admin.getTableDescriptor(name);
String coprocessorClass = "org.apache.hadoop.hbase.coprocessor.AggregateImplementation";
if (! descriptor.hasCoprocessor(coprocessorClass)) {
descriptor.addCoprocessor(coprocessorClass);
}
admin.modifyTable(name, descriptor);
admin.enableTable(name);
//计时
StopWatch stopWatch = new StopWatch();
stopWatch.start();
Scan scan = new Scan();
AggregationClient aggregationClient = new AggregationClient(conf);
System.out.println("RowCount: " + aggregationClient.rowCount(name, new LongColumnInterpreter(), scan));
stopWatch.stop();
System.out.println("统计耗时:" +stopWatch.getTotalTimeMillis());
} catch (Throwable e) {
e.printStackTrace();
}
}

6、参考资料


  • 参考1






推荐阅读
  • 开机自启动的几种方式
    0x01快速自启动目录快速启动目录自启动方式源于Windows中的一个目录,这个目录一般叫启动或者Startup。位于该目录下的PE文件会在开机后进行自启动 ... [详细]
  • Presto:高效即席查询引擎的深度解析与应用
    本文深入解析了Presto这一高效的即席查询引擎,详细探讨了其架构设计及其优缺点。Presto通过内存到内存的数据处理方式,显著提升了查询性能,相比传统的MapReduce查询,不仅减少了数据传输的延迟,还提高了查询的准确性和效率。然而,Presto在大规模数据处理和容错机制方面仍存在一定的局限性。本文还介绍了Presto在实际应用中的多种场景,展示了其在大数据分析领域的强大潜力。 ... [详细]
  • Android中将独立SO库封装进JAR包并实现SO库的加载与调用
    在Android开发中,将独立的SO库封装进JAR包并实现其加载与调用是一个常见的需求。本文详细介绍了如何将SO库嵌入到JAR包中,并确保在外部应用调用该JAR包时能够正确加载和使用这些SO库。通过这种方式,开发者可以更方便地管理和分发包含原生代码的库文件,提高开发效率和代码复用性。文章还探讨了常见的问题及其解决方案,帮助开发者避免在实际应用中遇到的坑。 ... [详细]
  • 动态壁纸 LiveWallPaper:让您的桌面栩栩如生(第二篇)
    在本文中,我们将继续探讨如何开发动态壁纸 LiveWallPaper,使您的桌面更加生动有趣。作为 2010 年 Google 暑期大学生博客分享大赛 Android 篇的一部分,我们将详细介绍 Ed Burnette 的《Hello, Android》第三版中的相关内容,并分享一些实用的开发技巧和经验。通过本篇文章,您将了解到如何利用 Android SDK 创建引人入胜的动态壁纸,提升用户体验。 ... [详细]
  • Hadoop 2.6 主要由 HDFS 和 YARN 两大部分组成,其中 YARN 包含了运行在 ResourceManager 的 JVM 中的组件以及在 NodeManager 中运行的部分。本文深入探讨了 Hadoop 2.6 日志文件的解析方法,并详细介绍了 MapReduce 日志管理的最佳实践,旨在帮助用户更好地理解和优化日志处理流程,提高系统运维效率。 ... [详细]
  • Ihavetwomethodsofgeneratingmdistinctrandomnumbersintherange[0..n-1]我有两种方法在范围[0.n-1]中生 ... [详细]
  • 从0到1搭建大数据平台
    从0到1搭建大数据平台 ... [详细]
  • Android 构建基础流程详解
    Android 构建基础流程详解 ... [详细]
  • 在Cisco IOS XR系统中,存在提供服务的服务器和使用这些服务的客户端。本文深入探讨了进程与线程状态转换机制,分析了其在系统性能优化中的关键作用,并提出了改进措施,以提高系统的响应速度和资源利用率。通过详细研究状态转换的各个环节,本文为开发人员和系统管理员提供了实用的指导,旨在提升整体系统效率和稳定性。 ... [详细]
  • Python 伦理黑客技术:深入探讨后门攻击(第三部分)
    在《Python 伦理黑客技术:深入探讨后门攻击(第三部分)》中,作者详细分析了后门攻击中的Socket问题。由于TCP协议基于流,难以确定消息批次的结束点,这给后门攻击的实现带来了挑战。为了解决这一问题,文章提出了一系列有效的技术方案,包括使用特定的分隔符和长度前缀,以确保数据包的准确传输和解析。这些方法不仅提高了攻击的隐蔽性和可靠性,还为安全研究人员提供了宝贵的参考。 ... [详细]
  • 本文探讨了如何利用Java代码获取当前本地操作系统中正在运行的进程列表及其详细信息。通过引入必要的包和类,开发者可以轻松地实现这一功能,为系统监控和管理提供有力支持。示例代码展示了具体实现方法,适用于需要了解系统进程状态的开发人员。 ... [详细]
  • QT框架中事件循环机制及事件分发类详解
    在QT框架中,QCoreApplication类作为事件循环的核心组件,为应用程序提供了基础的事件处理机制。该类继承自QObject,负责管理和调度各种事件,确保程序能够响应用户操作和其他系统事件。通过事件循环,QCoreApplication实现了高效的事件分发和处理,使得应用程序能够保持流畅的运行状态。此外,QCoreApplication还提供了多种方法和信号槽机制,方便开发者进行事件的定制和扩展。 ... [详细]
  • 本文介绍了如何利用ObjectMapper实现JSON与JavaBean之间的高效转换。ObjectMapper是Jackson库的核心组件,能够便捷地将Java对象序列化为JSON格式,并支持从JSON、XML以及文件等多种数据源反序列化为Java对象。此外,还探讨了在实际应用中如何优化转换性能,以提升系统整体效率。 ... [详细]
  • 数字图书馆近期展出了一批精选的Linux经典著作,这些书籍虽然部分较为陈旧,但依然具有重要的参考价值。如需转载相关内容,请务必注明来源:小文论坛(http://www.xiaowenbbs.com)。 ... [详细]
  • Python全局解释器锁(GIL)机制详解
    在Python中,线程是操作系统级别的原生线程。为了确保多线程环境下的内存安全,Python虚拟机引入了全局解释器锁(Global Interpreter Lock,简称GIL)。GIL是一种互斥锁,用于保护对解释器状态的访问,防止多个线程同时执行字节码。尽管GIL有助于简化内存管理,但它也限制了多核处理器上多线程程序的并行性能。本文将深入探讨GIL的工作原理及其对Python多线程编程的影响。 ... [详细]
author-avatar
Coco__GLL
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有