热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

关于机器学习评价指标AUC,召回率,准确率(ACC),MRR的白话讲解

准确率(ACC)指在分类中,使用测试集对模型进行分类,分类正确的记录个数占总记录个数的比例,计算公式如下所示

准确率(ACC)

指在分类中,使用测试集对模型进行分类,分类正确的记录个数占总记录个数的比例,计算公式如下所示:

{\rm{Acc}}uracy = \frac{​{​{n_{correct}}}}{​{​{n_{tatal}}}}

其中,\[{​{n_{correct}}}\]代表分类正确的记录个数,\[{​{n_{tatal}}}\]代表全部测试数据的个数

 

ROC曲线下方的面积大小(AUC)

AUC(Area Under Curve)[3]被定义为ROC曲线下的面积,使用AUC值作为评价标准是因为很多时候ROC曲线并不能清晰的说明哪个分类器的效果更好,而作为一个数值,对应AUC更大的分类器效果更好。

对于ROC曲线是基于样本类别和预测概率,具体来说,ROC曲线的x轴为伪阳性率,y轴是真阳性率。对于二分类问题,一个样本的有0,1两种类别,即阴性和阳性,为我们使用分类器进行预测时,有如表1所示四种可能性:

 

真实类别

1

0

预测类别

1

真阳性(TP)

伪阳性(FP)

0

真阴性(FN)

伪阴性(TN)

表1 混淆矩阵

即:

TP: 预测为正,实际为正

TN: 预测为负,实际为负

FP:预测为正,实际为负

FN: 预测为负,实际为正

召回率(TPR)

{\rm{TPR = }}\frac{​{TP}}{​{TP + FN}}

其意义为所有实际类别为1的样本,预测类别为1的比例

FPR = \frac{​{FP}}{​{FP + TN}}

以x轴为FPR,y轴为TPR,建立ROC曲线,该曲线下的面积即为AUC,其意义为随机挑选一个正样本以及一个负样本,分类器判断正样本的值高于负样本的值的概率,AUC越接近1,正确率越高。

MRR(Mean reciprocal rank)

是一个国际上通用的对搜索算法进行评价的机制,即第一个结果匹配,分数为1,第二个匹配分数为0.5,第n个匹配分数为1/n,如果没有匹配的句子分数为0。最终的分数为所有得分之和。其计算公式如下所示:

 

MRR = \frac{1}{n}\sum\limits_{i = 1}^n {\frac{1}{​{​{r_i}}}n}

其中,n 为测试集所有答案的数量 ,  \[{r_i}\]为第 i 个问题的第一个正确答案的位置。

 


推荐阅读
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • 深入解析:手把手教你构建决策树算法
    本文详细介绍了机器学习中广泛应用的决策树算法,通过天气数据集的实例演示了ID3和CART算法的手动推导过程。文章长度约2000字,建议阅读时间5分钟。 ... [详细]
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • 机器学习核心概念与技术
    本文系统梳理了机器学习的关键知识点,涵盖模型评估、正则化、线性模型、支持向量机、决策树及集成学习等内容,并深入探讨了各算法的原理和应用场景。 ... [详细]
  • 本文将介绍如何编写一些有趣的VBScript脚本,这些脚本可以在朋友之间进行无害的恶作剧。通过简单的代码示例,帮助您了解VBScript的基本语法和功能。 ... [详细]
  • 技术分享:从动态网站提取站点密钥的解决方案
    本文探讨了如何从动态网站中提取站点密钥,特别是针对验证码(reCAPTCHA)的处理方法。通过结合Selenium和requests库,提供了详细的代码示例和优化建议。 ... [详细]
  • 本文介绍如何利用动态规划算法解决经典的0-1背包问题。通过具体实例和代码实现,详细解释了在给定容量的背包中选择若干物品以最大化总价值的过程。 ... [详细]
  • 本文详细探讨了Java中的24种设计模式及其应用,并介绍了七大面向对象设计原则。通过创建型、结构型和行为型模式的分类,帮助开发者更好地理解和应用这些模式,提升代码质量和可维护性。 ... [详细]
  • 本文介绍了Java并发库中的阻塞队列(BlockingQueue)及其典型应用场景。通过具体实例,展示了如何利用LinkedBlockingQueue实现线程间高效、安全的数据传递,并结合线程池和原子类优化性能。 ... [详细]
  • 数据管理权威指南:《DAMA-DMBOK2 数据管理知识体系》
    本书提供了全面的数据管理职能、术语和最佳实践方法的标准行业解释,构建了数据管理的总体框架,为数据管理的发展奠定了坚实的理论基础。适合各类数据管理专业人士和相关领域的从业人员。 ... [详细]
  • 深入理解C++中的KMP算法:高效字符串匹配的利器
    本文详细介绍C++中实现KMP算法的方法,探讨其在字符串匹配问题上的优势。通过对比暴力匹配(BF)算法,展示KMP算法如何利用前缀表优化匹配过程,显著提升效率。 ... [详细]
  • 在金融和会计领域,准确无误地填写票据和结算凭证至关重要。这些文件不仅是支付结算和现金收付的重要依据,还直接关系到交易的安全性和准确性。本文介绍了一种使用C语言实现小写金额转换为大写金额的方法,确保数据的标准化和规范化。 ... [详细]
  • 本文详细介绍了macOS系统的核心组件,包括如何管理其安全特性——系统完整性保护(SIP),并探讨了不同版本的更新亮点。对于使用macOS系统的用户来说,了解这些信息有助于更好地管理和优化系统性能。 ... [详细]
author-avatar
柏拉图恋情
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有