图神经网络模型综述
作者:1小柱子8_814 | 来源:互联网 | 2024-11-28 13:27
本文综述了图神经网络(GraphNeuralNetworks,GNN)的发展,从传统的数据存储模型转向图和动态模型,探讨了模型中的显性和隐性结构,并详细介绍了GNN的关键组件及其应用。
### 图神经网络模型综述 随着数据科学的发展,传统的数据存储模型逐渐向图和动态模型转变。图神经网络(Graph Neural Networks, GNN)作为一种新兴的模型,能够在图结构数据中捕捉复杂的依赖关系。尽管模型中可能存在隐性的结构,但显性的结构往往更易于引导和控制。 #### 关键组件 GNN 的核心组件包括传播模块、采样模块和池化模块: 1. **传播模块**:用于在节点之间传播信息,使得聚合的信息能够同时捕获特征信息和拓扑信息。 2. **采样模块**:通常需要在图上进行传播,采样模块通常与传播模块结合使用,以提高效率和准确性。 3. **池化模块**:当需要高级子图或图的整体表示时,池化模块可以从节点中提取关键信息。 #### 传播模块的实现 传播模块通常包含卷积算子和递归算子,这些算子用于聚合来自邻居节点的信息。此外,跳过连接操作可以从节点的历史表示中收集信息,并缓解过度平滑(over-smoothing)问题。 #### GNN 的工作流程 GNN 将图映射到输出的过程通常分为两个步骤: 1. **节点表示生成**:通过传播步骤,生成每个节点的表示。 2. **输出模型**:使用输出模型将每个节点的表示和标签映射为最终的输出。 为了处理图的整体分类任务,一些模型建议引入一个特殊的“超级节点”(supernode),该节点通过特殊边与所有其他节点相连,从而简化整体分类任务。 #### 一般 GNN 模型架构 以下是一般的 GNN 模型架构示意图: ![GNN 架构](https://img.php1.cn/3cd4a/1eebe/cd5/fb32005f2115b419.webp) #### 实现代码示例 以下是使用 DGL 库实现的一个简单的 GNN 模型示例: ```python # -*- coding: utf-8 -*- """ ============================================================= File Name: gcn.py Author: songdongdong Date: 2021/3/8 15:44 Description: GCN (Graph Convolutional Networks) 是一种图卷积网络,提出于 2017 年。 GCN 与 CNN 类似,都是特征提取器,不同的是 GCN 提取的是图数据特征。 ============================================================= """ import torch import torch.nn as nn import torch.nn.functional as F from dgl.nn.pytorch import GraphConv # DGL 库中的图卷积层 from dgl.data import CoraGraphDataset class GCN(nn.Module): def __init__(self, g, in_feats, n_hidden, n_classes, n_layers, activation, dropout): super(GCN, self).__init__() self.g = g self.layers = nn.ModuleList() self.layers.append(GraphConv(in_feats, n_hidden, activation=activation)) # 输入层 for i in range(n_layers - 1): self.layers.append(GraphConv(n_hidden, n_hidden, activation=activation)) self.layers.append(GraphConv(n_hidden, n_classes)) # 输出层 self.dropout = nn.Dropout(p=dropout) def forward(self, features): h = features for i, layer in enumerate(self.layers): if i != 0: h = self.dropout(h) h = layer(self.g, h) return h @torch.no_grad() def evaluate(self, model, features, labels, mask): model.eval() with torch.no_grad(): logits = model(features) logits = logits[mask] labels = labels[mask] _, indices = torch.max(logits, dim=1) correct = torch.sum(indices == labels) return correct.item() * 1.0 / len(labels) def train(self, n_epochs=100, lr=1e-2, weight_decay=5e-4, n_hidden=16, n_layers=1, activation=F.relu, dropout=0.5): data = CoraGraphDataset() g = data[0] features = g.ndata['feat'] labels = g.ndata['label'] train_mask = g.ndata['train_mask'] val_mask = g.ndata['val_mask'] test_mask = g.ndata['test_mask'] in_feats = features.shape[1] n_classes = data.num_classes model = GCN(g, in_feats, n_hidden, n_classes, n_layers, activation, dropout) loss_fcn = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=weight_decay) for epoch in range(n_epochs): model.train() logits = model(features) loss = loss_fcn(logits[train_mask], labels[train_mask]) optimizer.zero_grad() loss.backward() optimizer.step() acc = self.evaluate(model, features, labels, val_mask) print(f'Epoch {epoch} | Loss: {loss.item():.4f} | Accuracy: {acc:.4f}') acc = self.evaluate(model, features, labels, test_mask) print(f'Test accuracy: {acc:.2%}') if __name__ == '__main__': gcn = GCN() gcn.train() ``` #### 相关资源 - [RESIDUAL GATED GRAPH CONVNETS](https://arxiv.org/abs/1711.07553) - [GRAPH CONVOLUTIONAL NETWORKS](https://arxiv.org/abs/1609.02907) - [Transformers 作为一种图神经网络](https://arxiv.org/abs/2010.02502) - [DGL 官方教程](https://docs.dgl.ai/en/latest/api/python/dgl.nn.html)
推荐阅读
尽管使用TensorFlow和PyTorch等成熟框架可以显著降低实现递归神经网络(RNN)的门槛,但对于初学者来说,理解其底层原理至关重要。本文将引导您使用NumPy从头构建一个用于自然语言处理(NLP)的RNN模型。 ...
[详细]
蜡笔小新 2024-12-26 11:29:15
本文总结了在使用Ionic 5进行Android平台APK打包时遇到的问题,特别是针对QRScanner插件的改造。通过详细分析和提供具体的解决方法,帮助开发者顺利打包并优化应用性能。 ...
[详细]
蜡笔小新 2024-12-27 12:10:17
本文详细解析了Python中的os和sys模块,介绍了它们的功能、常用方法及其在实际编程中的应用。 ...
[详细]
蜡笔小新 2024-12-26 22:04:19
本文详细介绍了Java中org.neo4j.helpers.collection.Iterators.single()方法的功能、使用场景及代码示例,帮助开发者更好地理解和应用该方法。 ...
[详细]
蜡笔小新 2024-12-28 10:51:55
Explore how Matterverse is redefining the metaverse experience, creating immersive and meaningful virtual environments that foster genuine connections and economic opportunities. ...
[详细]
蜡笔小新 2024-12-28 09:44:49
本文探讨了如何从动态网站中提取站点密钥,特别是针对验证码(reCAPTCHA)的处理方法。通过结合Selenium和requests库,提供了详细的代码示例和优化建议。 ...
[详细]
蜡笔小新 2024-12-28 04:11:47
Java 中的 BigDecimal pow()方法,示例 ...
[详细]
蜡笔小新 2024-12-27 20:54:03
1.如何在运行状态查看源代码?查看函数的源代码,我们通常会使用IDE来完成。比如在PyCharm中,你可以Ctrl+鼠标点击进入函数的源代码。那如果没有IDE呢?当我们想使用一个函 ...
[详细]
蜡笔小新 2024-12-27 18:36:54
主要用了2个类来实现的,话不多说,直接看运行结果,然后在奉上源代码1.Index.javaimportjava.awt.Color;im ...
[详细]
蜡笔小新 2024-12-27 18:18:10
本文详细介绍了如何使用 Yii2 的 GridView 组件在列表页面实现数据的直接编辑功能。通过具体的代码示例和步骤,帮助开发者快速掌握这一实用技巧。 ...
[详细]
蜡笔小新 2024-12-27 16:27:52
前言--页数多了以后需要指定到某一页(只做了功能,样式没有细调)html ...
[详细]
蜡笔小新 2024-12-27 15:19:01
本文详细介绍了Akka中的BackoffSupervisor机制,探讨其在处理持久化失败和Actor重启时的应用。通过具体示例,展示了如何配置和使用BackoffSupervisor以实现更细粒度的异常处理。 ...
[详细]
蜡笔小新 2024-12-27 15:04:09
本章将深入探讨移动 UI 设计的核心原则,帮助开发者构建简洁、高效且用户友好的界面。通过学习设计规则和用户体验优化技巧,您将能够创建出既美观又实用的移动应用。 ...
[详细]
蜡笔小新 2024-12-27 08:43:40
本文探讨了如何在给定整数N的情况下,找到两个不同的整数a和b,使得它们的和最大,并且满足特定的数学条件。 ...
[详细]
蜡笔小新 2024-12-26 19:26:18
本文介绍了如何使用PHP代码实现微信平台的媒体素材上传功能,详细解释了API接口的使用方法和注意事项,确保文件路径正确以避免常见的错误。 ...
[详细]
蜡笔小新 2024-12-26 16:54:06