热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

GoogleMapReduce有啥巧妙优化?

搞架构的人,Google的架构论文是必看的,但好像大家都不愿意去啃英文论文。故把自己的读书笔记,加入自己的思考,分享给大家。

搞架构的人,Google的架构论文是必看的,但好像大家都不愿意去啃英文论文。故把自己的读书笔记,加入自己的思考,分享给大家。

 

《MapReduce到底解决什么问题?》做了简介,这是第二篇,Google MapReduce优化启示(中)。

什么是MapReduce?

MapReduce这个编程模型解决什么问题?

Google MapReduce是Google产出的一个编程模型,同时Google也给出架构实现。它能够解决“能用分治法解决的问题”。

 

同时,前文以“统计大量文档中单词出现的个数”为例,例举了如何“先分再合”的撰写map与reduce来解决实际问题。

画外音,强烈建议回顾一下前情提要:

《MapReduce到底解决什么问题?》。


MapReduce的核心思路是:

  • 并行

  • 先分再合

下图简述了MR计算“词频统计”的过程。

从左到右四个部分,分别是:

  • 输入文件

  • 分:M个并行的map计算实例

  • 合:R个并行的reduce计算实例

  • 输出结果

 

先看最后一步,reduce输出最终结果。

可以看到,R个reduce实例并发进行处理,直接输出最后的计数结果。

实例1输出:(a, 256)(able, 128)(emacs, 1)

实例2输出:(f*ck, 32768) (coding, 65535)

实例3输出:(vim,65535)(x, 16)(zero, 258)

画外音:这就是总结果,可以看到vim比emacs受欢迎很多。

 

需要理解的是,由于这是业务计算的最终结果,一个单词的计数不会出现在两个实例里。即:如果(a, 256)出现在了实例1的输出里,就一定不会出现在其他实例的输出里。

画外音:否则的话,还需要合并,就不是最终结果了。

 

再看中间步骤,map到reduce的过程。

可以看到,M个map实例的输出,会作为R个reduce实例的输入。

 

潜在问题一:每个map都有可能输出(a, 1),而最终结果(a, 256)必须由一个reduce输出,那如何保证每个map输出的同一个key,落到同一个reduce上去呢?

这就是“分区函数”的作用。

 

什么是分区函数?

分区函数,是使用MapReduce的用户需所实现的,决定map输出的每一个key应当落到哪个reduce上的函数。

画外音:如果用户没有实现,会使用默认分区函数。

 

以词频统计的应用为例,分区函数可能是:

(1) 以[a-g]开头的key落到第一个reduce实例;

(2) 以[h-n]开头的key落到第二个reduce实例;

(3) 以[o-z]开头的key落到第三个reduce实例;

画外音:有点像数据库水平切分的“范围法”。

 

分区函数实现要点是什么?

为了保证每一个reduce实例都能够差不多时间结束工作任务,分区函数的实现要点是:尽量负载均衡。

画外音:即数据均匀分摊。

 

上述词频统计的分区函数,就不是负载均衡的,有些reduce实例处理的单词多,有些reduce处理的单词少,这样就可能出现,所有reduce实例都处理结束,最后等待一个长尾reduce的情况。

 

对于词频统计,负载更为均衡的分区函数为:

hash(key) % 3

画外音:有点像数据库水平切分的“哈希法”。

 

潜在问题二:每个map都有可能输出多个(a, 1),这样无形中增大了网络带宽资源,以及reduce的计算资源,有没有办法进行优化呢?

这就是“合并函数”的作用。

 

什么是合并函数?

有时,map产生的中间key的重复数据比重很大,可以提供给用户一个自定义函数,在一个map实例完成工作后,本地就做一次合并,这样网络传输与reduce计算资源都能节省很多。

 

合并函数在每个map任务结束前都会执行一次,一般来说,合并函数与reduce函数是一样的,区别是:

  • 合并函数执行map实例本地数据合并

  • reduce函数执行最终的合并,会收集多个map实例的数据

 

对于词频统计应用,合并函数可以将:

一个map实例的多个(a, 1)合并成一个(a, $count)输出。

 

最后看第一个个步骤,输入文件到map的过程。

潜在问题三:如何确定文件到map的输入呢?

随意即可,只要负载均衡,均匀切分输入文件大小就行,不用管分到哪个map实例。

画外音:无论分到那个map都能正确处理。

 

结论

Google MapReduce实施了一系列的优化。

  • 分区函数:保证不同map输出的相同key,落到同一个reduce里

  • 合并函数:在map结束时,对相同key的多个输出做本地合并,节省总体资源

  • 输入文件到map如何切分:随意,切分均匀就行

 

希望大家对MapReduce的优化思路有一个了解,思路比结论更重要

下章,讲Google MapReduce的工程架构实现。

架构师之路-分享可落地的技术文章

相关推荐:

《GFS架构启示》

《Google MapReduce到底解决什么问题?》


推荐阅读
  • Zabbix自定义监控与邮件告警配置实践
    本文详细介绍了如何在Zabbix中添加自定义监控项目,配置邮件告警功能,并解决测试告警时遇到的邮件不发送问题。 ... [详细]
  • 本文详细介绍了如何正确设置Shadowsocks公共代理,包括调整超时设置、检查系统限制、防止滥用及遵守DMCA法规等关键步骤。 ... [详细]
  • Hadoop的分布式架构改进与应用
    nsitionalENhttp:www.w3.orgTRxhtml1DTDxhtml1-transitional.dtd ... [详细]
  • 深入解析C语言中的关键字及其分类
    本文将全面介绍C语言中的关键字,并按照功能将其分为数据类型关键字、控制结构关键字、存储类别关键字和其他关键字四大类,旨在帮助读者更好地理解和运用这些基本元素。C语言中共有32个关键字。 ... [详细]
  • Docker安全策略与管理
    本文探讨了Docker的安全挑战、核心安全特性及其管理策略,旨在帮助读者深入理解Docker安全机制,并提供实用的安全管理建议。 ... [详细]
  • 问题描述现在,不管开发一个多大的系统(至少我现在的部门是这样的),都会带一个日志功能;在实际开发过程中 ... [详细]
  • 深入探讨前端代码优化策略
    本文深入讨论了前端开发中代码优化的关键技术,包括JavaScript、HTML和CSS的优化方法,旨在提升网页加载速度和用户体验。 ... [详细]
  • 本文详细介绍了如何搭建一个高可用的MongoDB集群,包括环境准备、用户配置、目录创建、MongoDB安装、配置文件设置、集群组件部署等步骤。特别关注分片、读写分离及负载均衡的实现。 ... [详细]
  • Presto:高效即席查询引擎的深度解析与应用
    本文深入解析了Presto这一高效的即席查询引擎,详细探讨了其架构设计及其优缺点。Presto通过内存到内存的数据处理方式,显著提升了查询性能,相比传统的MapReduce查询,不仅减少了数据传输的延迟,还提高了查询的准确性和效率。然而,Presto在大规模数据处理和容错机制方面仍存在一定的局限性。本文还介绍了Presto在实际应用中的多种场景,展示了其在大数据分析领域的强大潜力。 ... [详细]
  • 如何高效启动大数据应用之旅?
    在前一篇文章中,我探讨了大数据的定义及其与数据挖掘的区别。本文将重点介绍如何高效启动大数据应用项目,涵盖关键步骤和最佳实践,帮助读者快速踏上大数据之旅。 ... [详细]
  • Hadoop 2.6 主要由 HDFS 和 YARN 两大部分组成,其中 YARN 包含了运行在 ResourceManager 的 JVM 中的组件以及在 NodeManager 中运行的部分。本文深入探讨了 Hadoop 2.6 日志文件的解析方法,并详细介绍了 MapReduce 日志管理的最佳实践,旨在帮助用户更好地理解和优化日志处理流程,提高系统运维效率。 ... [详细]
  • PHP中元素的计量单位是什么? ... [详细]
  • 在Hive中合理配置Map和Reduce任务的数量对于优化不同场景下的性能至关重要。本文探讨了如何控制Hive任务中的Map数量,分析了当输入数据超过128MB时是否会自动拆分,以及Map数量是否越多越好的问题。通过实际案例和实验数据,本文提供了具体的配置建议,帮助用户在不同场景下实现最佳性能。 ... [详细]
  • Python 数据分析领域不仅拥有高质量的开发环境,还提供了众多功能强大的第三方库。本文将介绍六个关键步骤,帮助读者掌握 Python 数据分析的核心技能,并深入探讨六款虽不广为人知但却极具潜力的数据处理库,如 Pandas 的替代品和新兴的可视化工具,助力数据科学家和分析师提升工作效率。 ... [详细]
  • Hadoop——实验七:MapReduce编程实践
    文章目录一.实验目的二.实验内容三.实验步骤及结果分析 1.基于ubuntukylin14.04(7)版本,安装hadoop-eclipse-kepler-plugi ... [详细]
author-avatar
月光下大手拉S小手
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有