热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

个推消息中心如何实现多渠道消息智能下发?

前言目前,各行业的数智化进程如火如荼,企业对数智化用户运营的需求日益旺盛;同时,在万物互联的5G时代,用户触达的渠道也变得更加丰富。企业需要更高效、智能的方式进行用户触达管理。基于



前言


目前,各行业的数智化进程如火如荼,企业对数智化用户运营的需求日益旺盛;同时,在万物互联的5G时代,用户触达的渠道也变得更加丰富。企业需要更高效、智能的方式进行用户触达管理。基于此,个推将多年来积累的数字化运营经验和用户触达能力相结合,打造了 “消息中心”系统产品 ,能够帮助企业客户将APP通知栏消息、短信、微信、钉钉的系统消息、智能人工外呼、5G消息等行业八大主流用户触达渠道进行有效整合和管理。



个推消息中心技术架构


本文从技术角度解读“个推消息中心”如何实现多渠道消息下发的智能管理。


一、用户触达的三大范式


个推在消息推送领域有十余年的实践经验,一直深度服务于企业消息管理的一线,深刻理解各行业客户在消息管理和用户触达方面的差异化需求。通过总结大量的消息下发模版,对数十个行业场景的特征进行整合,个推最终抽象出消息在多渠道的流转过程和模式,形成了个推消息中心开展用户触达的三大基础范式: 并发消息、补发消息、分发消息。


1、并发消息


并发消息是指实现特定消息在多渠道的并行下发,适用于重要消息的大规模群发。比如,银行在开展某次运营活动时,采用APP消息推送+微信+短信等多渠道为用户推送活动优惠通知。



个推消息中心-并发消息处理流程


2、补发消息


为了提升消息的到达率,企业会对未触达的用户进行消息补发。比如,很多银行会选择将手机银行消息推送作为发送动帐通知的主渠道,在手机银行推送消息未到达时,再采用短信下发的方式通知客户。



个推消息中心-补发消息处理流程


3、分发消息


根据消息内容和想要触达的用户群不同,企业会通过不同渠道下发不同的消息。比如,很多银行在发送动帐通知时,会通过微信来发送200元以下的小额交易动账消息,而针对200元以上的大额交易动账则会选择短信的方式来通知用户。



个推消息中心-分发消息处理流程


个推消息中心依托用户触达的三大范式,打通了消息从产生、过滤、规则匹配、高效下发、海量消息保存以及最终展示的全链路,是一个 集消息下发、精准匹配、效果追踪、数据统计等功能于一体 的平台性产品。


个推消息中心能够根据下发规则对消息、渠道和用户群进行自动匹配,实现智能推送。 相比传统的单渠道推送,个推消息中心不仅能够通过并发、分发、补发等方式实现更高的消息到达率;还能够帮助企业更加科学地管理渠道资源,大幅减少短信费用和外呼成本,提升用户运营效率。


二、个推消息中心的技术实现


同时,个推消息中心实现了对复杂的目标客群进行有效管理,能够满足 金融、融媒体 等行业客户对 大规模消息实时下发、海量数据存储 等方面的能力要求。


1、复杂目标客群管理


个推消息中心提供了一套统一的客户通道关系存储体系,能够将各个通道的用户体系和客户方自身的用户体系对应起来,实现了复杂目标客群的有效管理。由于客户方系统的用户体系和业务形态非常复杂,可能是1对1、1对N、N对1、N对M等对应关系,因此个推消息中心 采用“N对M”为基础存储结构 ,并 提供灵活配置的客群管理模块 以支持企业进行不同类型的客户通道关系管理,满足了绝大多数企业用户的需求。


2、高并发消息下发


在类似“618”“11.11”等特殊的营销节点或运营活动期间,企业往往需要在几分钟之内完成数百万甚至千万量级消息的批量下发。这就要求消息中心系统必须 具备数万QPS的消息下发能力 。我们做了如下处理,以满足企业客户对系统性能的要求。


减少Redis操作


个推消息中心中,对客户通道关系的正向和逆向转化关系的读写需要严重依赖于系统的Redis。所以,额外新增的Redis操作逻辑过多会给Redis集群带来较大压力,从而对原先单渠道推送的性能产生影响。这就要求我们将业务流程中非必要的Redis操作消除。我们首先 整合了Redis存储value的内容以减少Redis的读写次数;同时,用其他设计方案以代替Redis操作 ,例如:我们去除了依赖于Redis的分布式token存储方式,而采用其他的安全方式进行安全校验,以减少Redis集群的压力。


隔离


1 )业务隔离


不同类型的推送任务对系统的资源占用和要求不同。比如,全推、标签推、分组推等推送任务要求系统在短时间内下发数百万甚至数千万条消息,会占用较多的资源,给系统带来较大冲击,从而对单推、列表推等实时性较高的消息下发任务产生较大影响。所以我们 对不同类型的推送任务进行了业务上的隔离 ,以保证系统及时响应和处理优先级更高的推送任务。


2) 存储资源隔离


同时,我们将关系型数据库里的数据根据业务特点及数据规模进行分库,保证核心功能不受边缘功能的影响;并将Redis集群隔离,划分多个Redis集群,防止单个Redis故障对整个系统产生重大影响,保障系统的稳定运行。


分布式任务调度


其次,我们将全推、标签推、分组推等规模较大的推送任务拆分成一个个小任务,并由分布式任务调度系统统一调度,由整个推送集群共同处理任务请求,以保证大批量消息的及时下发。


异步处理


消息中心推送流量往往具备流量大、波峰波谷差异巨大等特点,因此我们采用MQ、日志异步落库、异步RPC等形式,尽量避免了系统的阻塞,从而达到较高的QPS。


3、海量数据的存储能力


系统在运行的过程中必然会产生数据,并需要对相关数据进行计算和存储。个推消息中心系统需要存储的数据主要有三大部分:


客户通道关系、消息下发计数等数据。 在高QPS和高实时性的推送需求下,我们必须将此类数据(数量级在百万乃至亿级)存储在缓存中以提升系统性能。


消息下发任务数据。 个推消息中心需要对每个任务的详情以及每个任务下消息的到达、点击、展示等各类明细数据进行存储。此类数据目前日增量在百万及千万级不等。


部分业务方要求长时间存储的消息详情。 这部分数据往往日增量在千万级到亿级不等,存储时间从半年到永久不等,且要支持较快的查询及较高的QPS。


我们采用以下方式解决海量数据存储的问题:


1)Codis集群


针对缓存数据,我们构建了分布式Codis集群,采用代理+分片的形式对Redis进行扩容。以支持TB级系统缓存数据的存储。


2)关系型数据库分库分表(MySQL和Oracle)


由于客户的统计需求变化多样,目前消息中心支持从用户、模版、通道、任务等多维度对推送任务进行统计。我们以日维度+分库分表的形式存储了所有推送任务信息的详情,支持了从用户、模版、通道、任务等维度较为实时的统计。


3)HBase


HBase是一个分布式的、面向列的开源数据库。具备高可靠、高性能、存储空间几乎可以无限扩展的特点。我们采用HBase来存储历史消息,使系统可以支持PB级数据的存储及数万QPS的用户维度消息查询并发能力。


总结


本文对个推消息中心的技术实现进行了介绍。个推消息中心能对下发的消息进行统一调度、精细化管理,尤其是对于未触达的用户可以进行多渠道的补发、并发,协助客户形成高转化的投放策略。同时个推消息中心具备高并发、高可靠等性能,能够很好地满足行业客户的运营需求。


个推“消息中心”采用私有化部署,可根据客户具体需求进行个性化定制,已经服务于银行、融媒体等多家行业客户。 如果你对“消息中心”感兴趣,欢迎通过个推企业微信咨询 ,我们会第一时间安排专属顾问为您提供一对一服务。





推荐阅读
  • 本文详细介绍了优化DB2数据库性能的多种方法,涵盖统计信息更新、缓冲池调整、日志缓冲区配置、应用程序堆大小设置、排序堆参数调整、代理程序管理、锁机制优化、活动应用程序限制、页清除程序配置、I/O服务器数量设定以及编入组提交数调整等方面。通过这些技术手段,可以显著提升数据库的运行效率和响应速度。 ... [详细]
  • MySQL缓存机制深度解析
    本文详细探讨了MySQL的缓存机制,包括主从复制、读写分离以及缓存同步策略等内容。通过理解这些概念和技术,读者可以更好地优化数据库性能。 ... [详细]
  • 本文探讨了如何在日常工作中通过优化效率和深入研究核心技术,将技术和知识转化为实际收益。文章结合个人经验,分享了提高工作效率、掌握高价值技能以及选择合适工作环境的方法,帮助读者更好地实现技术变现。 ... [详细]
  • 深入理解一致性哈希算法及其应用
    本文详细介绍了分布式系统中的一致性哈希算法,探讨其原理、优势及应用场景,帮助读者全面掌握这一关键技术。 ... [详细]
  • Netflix利用Druid实现高效实时数据分析
    本文探讨了全球领先的在线娱乐公司Netflix如何通过采用Apache Druid,实现了高效的数据采集、处理和实时分析,从而显著提升了用户体验和业务决策的准确性。文章详细介绍了Netflix在系统架构、数据摄取、管理和查询方面的实践,并展示了Druid在大规模数据处理中的卓越性能。 ... [详细]
  • 本文深入探讨了MySQL中常见的面试问题,包括事务隔离级别、存储引擎选择、索引结构及优化等关键知识点。通过详细解析,帮助读者在面对BAT等大厂面试时更加从容。 ... [详细]
  • TCP长连接设备管理平台:架构与功能概览
    本文介绍了基于TCP长连接的设备管理平台的设计理念、技术选型及主要功能模块。最初,项目旨在实现简单的协议测试,但随着需求扩展,逐步演变为一个完整的前后端分离系统。 ... [详细]
  • 本文探讨了Java编程的核心要素,特别是其面向对象的特性,并详细介绍了Java虚拟机、类装载器体系结构、Java类文件和Java API等关键技术。这些技术使得Java成为一种功能强大且易于使用的编程语言。 ... [详细]
  • 本文作者分享了在阿里巴巴获得实习offer的经历,包括五轮面试的详细内容和经验总结。其中四轮为技术面试,一轮为HR面试,涵盖了大量的Java技术和项目实践经验。 ... [详细]
  • 全面解析运维监控:白盒与黑盒监控及四大黄金指标
    本文深入探讨了白盒和黑盒监控的概念,以及它们在系统监控中的应用。通过详细分析基础监控和业务监控的不同采集方法,结合四个黄金指标的解读,帮助读者更好地理解和实施有效的监控策略。 ... [详细]
  • 本文介绍了数字音视频编解码技术标准,特别是中国自主研发的AVS标准,及其在短视频软件开发中的应用。文章探讨了AVS标准的发展历程、技术特点以及与国际标准的对比。 ... [详细]
  • 本文详细探讨了数据仓库中常见的四种事实表类型:事务事实表、周期性快照事实表、累积快照事实表以及无事实的事实表,并提供了关于如何处理不同类型的度量指标的专业建议。 ... [详细]
  • 深入解析RAID0、RAID1和RAID5的不同特性及其安全性
    本文详细探讨了RAID0、RAID1和RAID5三种磁盘阵列技术的特点、优势以及它们在数据安全方面的表现。RAID0通过数据条带化提升性能,但牺牲了数据冗余;RAID1利用镜像技术确保数据的高可用性;而RAID5则结合了数据条带化和分布式奇偶校验,提供了较好的性能和数据保护。 ... [详细]
  • 探讨低代码行业发展现状,分析其未能催生大型企业的原因,包括市场需求、技术局限及商业模型等方面。 ... [详细]
  • 腾讯云移动推送TPNS(Tencent Push Notification Service)为APP开发者和运营人员提供了一站式、高效、稳定的推送解决方案,帮助提升用户活跃度和运营效率。 ... [详细]
author-avatar
docetaxel
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有