热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

哥德巴赫猜想的程序验证

TimusOnlineJudge网站上有这么一道题目:1356.SomethingEasier。这道题目的输入是一组2到109之间整数,对于每个输入的整数,要求用最少个数的素数的和来表示。这道题目的时间限制是1秒。我们知道著名的哥德巴赫猜想是:任何一个充分大的偶数都可以表示为两个素数之和。

Timus Online Judge 网站上有这么一道题目:1356. Something Easier。这道题目的输入是一组  2 到 109 之间整数,对于每个输入的整数,要求用最少个数的素数的和来表示。这道题目的时间限制是 1 秒。

我们知道著名的哥德巴赫猜想是:任何一个充分大的偶数都可以表示为两个素数之和。

于是我们有以下的 C 语言程序:

// http://acm.timus.ru/problem.aspx?space=1&num=1356
#include 
#include 
#include 
#include 
 
// http://en.wikipedia.org/wiki/Prime_number_theorem
#define PRIME_MAX 10000
#define PRIME_COUNT 1229
 
typedef unsigned long long U8;
typedef char bool;
 
const bool true = 1;
const bool false = 0;
 
// http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
bool* getSieve(int max)
{
  static bool sieve[(PRIME_MAX >> 1) + 1];
  int i, j, imax = sqrt(max);
  for (i = 3; i <= imax; i += 2)
    if (!sieve[i >> 1])
      for (j = i * i; j <= max; j += i <<1) sieve[j >> 1] = true;
  return sieve;
}
 
int* getPrimes(int max)
{
  static int primes[PRIME_COUNT + 1];
  bool *sieve = getSieve(max);
  int i, j = 0;
  for (primes[j++] = 2, i = 3; i <= max; i += 2)
    if (!sieve[i >> 1]) primes[j++] = i;
  return primes;
}
 
U8 modMultiply(U8 a, U8 b, U8 m)
{
  return a * b % m;
}
 
U8 modPow(U8 a, U8 b, U8 m)
{
  U8 v = 1, p;
  for (p = a % m; b > 0; b >>= 1, p = modMultiply(p, p, m))
    if (b & 1) v = modMultiply(v, p, m);
  return v;
}
 
bool witness(U8 a, U8 n)
{
  U8 n1 = n - 1, s2 = n1 & -n1, x = modPow(a, n1 / s2, n);
  if (x == 1 || x == n1) return false;
  for (; s2 > 1; s2 >>= 1)
  {
    x = modMultiply(x, x, n);
    if (x == 1) return true;
    if (x == n1) return false;
  }
  return true;
}
 
U8 random(U8 high)
{
  // http://www.cppreference.com/wiki/c/other/rand
  return (U8)(high * (rand() / (double)RAND_MAX));
}
 
// http://en.wikipedia.org/wiki/Miller-Rabin_primality_test
// n, an integer to be tested for primality
// k, a parameter that determines the accuracy of the test
bool probablyPrime(U8 n, int k)
{
  if (n == 2 || n == 3) return 1;
  if (n <2 || n % 2 == 0) return 0;
  while (k-- > 0) if (witness(random(n - 3) + 2, n)) return false;
  return true;
}
 
bool isPrime(int n)
{
  return probablyPrime(n, 2);
}
 
int outEven(int primes[], int n)
{
  int i, p, q;
  for (i = 0; (p = primes[i]) != 0; i++)
    if (isPrime(q = n - p))
      return printf("%d %d", p, q);
  return printf("error:%d", n);
}
 
int main(void)
{
  int t, n, *primes = getPrimes(PRIME_MAX);
  srand(time(NULL));
  scanf("%d", &t);
  while (t-- > 0)
  {
    scanf("%d", &n);
    if (isPrime(n)) printf("%d", n);
    else if ((n & 1) == 0) outEven(primes, n);
    else if (isPrime(n - 2)) printf("2 %d", n - 2);
    else printf("3 "), outEven(primes, n - 3);
    puts("");
  }
  return 0;
}
  • 根据哥德巴赫猜想,充分大的偶数 n = p + q,这里 p <= q 是素数。我们猜测当 n <= 109 时,p <104。第 8 行就是定义 p 的最大值。
  • 根据素数定理,我们知道 104 以内的素数有 1229 个。第 9 行就是定义程序中要用到的素数的个数。
  • 第 17 到 26 行的 getSieve 函数用埃拉托斯特尼筛法筛选出素数。
  • 第 28 到 36 行的 getPrimes 函数从筛中取出这些素数。
  • 第 38 到 79 行的一系列函数最终是为了 probablyPrime 函数,用于检测素数。请参见我在2010年7月写的随笔:【算法】米勒-拉宾素性检验
  • 第 81 到 84 行的 isPrime 函数调用 probablyPrime 函数来检测素数。
  • 第 86 到 93 行的 outEven 函数对大于 2 的偶数验证哥德巴赫猜想,即输出一对素数 p 和 q。
  • 第 95 到 110 行是 main 函数。其中:
  • 第 103 行处理 n 是素数的情况,直接输出该素数(包括素数 2,所以 outEven 函数处理的偶数肯定大于 2)。
  • 第 104 行对大于 2 的偶数输出一对素数(通过调用 outEven 函数,强哥德巴赫猜想)。
  • 第 105 行处理大于 5 的奇数能够分解为 2 和另外一个素数的和的情况(注意不要遗漏这个情形!)。
  • 第 106 行处理大于 5 的奇数的其他情况,首先输出一个 3,然后调用 outEven 函数处理偶数 n - 3 (弱哥德巴赫猜想)。

上述程序在 Timus Online Judge 网站的运行时间是 0.015 秒。

本文地址:http://www.nowamagic.net/librarys/veda/detail/800,欢迎访问原出处。


推荐阅读
  • 使用Numpy实现无外部库依赖的双线性插值图像缩放
    本文介绍如何仅使用Numpy库,通过双线性插值方法实现图像的高效缩放,避免了对OpenCV等图像处理库的依赖。文中详细解释了算法原理,并提供了完整的代码示例。 ... [详细]
  • 深入理解父组件与子组件的引用和访问
    本文详细介绍了如何在Vue.js中通过$children和$refs属性实现父组件对子组件的访问,并提供了具体的代码示例及最佳实践。 ... [详细]
  • 极大似然估计(MLE)及其3D可视化解析
    本文详细介绍了极大似然估计(Maximum Likelihood Estimation, MLE)的推导过程,并通过3D可视化展示其在概率密度函数中的应用。我们将探讨如何利用MLE来估计参数,以及它在实际问题中的重要性。 ... [详细]
  • 2023 ARM嵌入式系统全国技术巡讲旨在分享ARM公司在半导体知识产权(IP)领域的最新进展。作为全球领先的IP提供商,ARM在嵌入式处理器市场占据主导地位,其产品广泛应用于90%以上的嵌入式设备中。此次巡讲将邀请来自ARM、飞思卡尔以及华清远见教育集团的行业专家,共同探讨当前嵌入式系统的前沿技术和应用。 ... [详细]
  • 本文介绍如何解决在 IIS 环境下 PHP 页面无法找到的问题。主要步骤包括配置 Internet 信息服务管理器中的 ISAPI 扩展和 Active Server Pages 设置,确保 PHP 脚本能够正常运行。 ... [详细]
  • Python 异步编程:深入理解 asyncio 库(上)
    本文介绍了 Python 3.4 版本引入的标准库 asyncio,该库为异步 IO 提供了强大的支持。我们将探讨为什么需要 asyncio,以及它如何简化并发编程的复杂性,并详细介绍其核心概念和使用方法。 ... [详细]
  • 探讨一个老旧 PHP MySQL 系统中,时间戳字段不定期出现异常值的问题及其可能原因。 ... [详细]
  • 国内BI工具迎战国际巨头Tableau,稳步崛起
    尽管商业智能(BI)工具在中国的普及程度尚不及国际市场,但近年来,随着本土企业的持续创新和市场推广,国内主流BI工具正逐渐崭露头角。面对国际品牌如Tableau的强大竞争,国内BI工具通过不断优化产品和技术,赢得了越来越多用户的认可。 ... [详细]
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • 郑州大学在211高校中的地位与排名解析
    本文将详细解读郑州大学作为一所位于河南省的211和双一流B类高校,在全国211高校中的地位与排名,帮助高三学生更好地了解这所知名学府的实力与发展前景。 ... [详细]
  • 深入理解 Oracle 存储函数:计算员工年收入
    本文介绍如何使用 Oracle 存储函数查询特定员工的年收入。我们将详细解释存储函数的创建过程,并提供完整的代码示例。 ... [详细]
  • 优化ASM字节码操作:简化类转换与移除冗余指令
    本文探讨如何利用ASM框架进行字节码操作,以优化现有类的转换过程,简化复杂的转换逻辑,并移除不必要的加0操作。通过这些技术手段,可以显著提升代码性能和可维护性。 ... [详细]
  • 本文总结了2018年的关键成就,包括职业变动、购车、考取驾照等重要事件,并分享了读书、工作、家庭和朋友方面的感悟。同时,展望2019年,制定了健康、软实力提升和技术学习的具体目标。 ... [详细]
  • 电子元件封装库:三极管、MOS管及部分LDO(含3D模型)
    本资源汇集了常用的插件和贴片三极管、MOS管以及部分LDO的封装,涵盖TO和SOT系列。所有封装均配有高质量的3D模型,共计96种,满足日常设计需求。 ... [详细]
  • 在计算机技术的学习道路上,51CTO学院以其专业性和专注度给我留下了深刻印象。从2012年接触计算机到2014年开始系统学习网络技术和安全领域,51CTO学院始终是我信赖的学习平台。 ... [详细]
author-avatar
手机用户2502860727
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有