热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

【高性能计算】Ⅰ

总章节:并行编程计算模型GPU编程分布式计算框架1、概念性问题为什么需要高性能计算?什


总章节:并行编程
计算模型
GPU编程
分布式计算框架


1、概念性问题

为什么需要高性能计算?
什么是高性能计算?
为什么需要并行计算?
什么是并行计算?
高性能计算与并行计算、分布式计算及云计算的联系和区别?


1.1为什么需要高性能计算

除了科学计算之外还在其他领域有计算需求:
商业、医药、工程、人工智能(数据挖掘、深度学习)
例如:天气预报、动漫与影视创作、商业高性能计算(决策支持、风险监测、数据挖掘、供应链优化)
渲染农场:分布式并行集群计算系统

三种提高性能的方法:努力工作、工作得更有效率、团队协作


1.2什么是高性能计算


高性能计算是指使用很多处理器(作为单个机器的一部分)或者某一集群中组织的几台计算机(作为单个计算资源操作)的计算系统和环境。致力于开发超级计算机,研究并行算法和开发相关软件


特点:高速运算、大内存、海量存储

CPU扩展的瓶颈:①晶体管密度的增加不能带来计算性能的增加
②能耗和时钟频率的限制

AMD在2006年第一个推出了双核处理器,其计算单元相互独立,但是它们共享CPU的一、二级缓存


1.3为什么需要并行计算

双核的运算速度不一定会比单核的CPU快,如果不针对多核进行软件开发,双核的运算速度就很可能不如单核的。要想发挥多核功能,设计的软件就首先要能做并行计算


1.3.1并行计算的趋势

①单核时代
驱动力:摩尔定律、晶体管制造技术
局限:能耗、复杂性
如:Assembly----c/c+±------java
②多核时代
驱动力:摩尔定律的限制、SMP技术的发展
局限、能耗、扩展性受限
如:Pthread-----OpenMP
③分布式计算时代
驱动力:网络技术的发展
局限:同步控制、通信负载
如:MPI------MapReduce
④异构计算系统
驱动力:大量数据计算、并行性需求、低功耗GPUs
局限:编程模型、通信负载
如:Shader-----CUDA-----OpenCL


1.3.2为什么需要并行计算

①节省时间
②使用更多的计算资源以获得更短的执行时间


1.4什么是并行计算


1.4.1串行计算

常规软件是串行的
①设计运行于同一个中央处理器上
②通过离散的指令序列完成一个问题的解决
③一条一条指令的执行
④同时只有一条指令在执行


1.4.2并行计算

是同时应用多个计算资源解决一个计算问题
①设计多个计算资源或者处理器
②问题被分解为多个离散的部分,可以同时处理
③每个部分可以由一系列指令完成
每个部分的指令在不同的处理器上执行


1.5并行计算与分布式计算的区别


1.5.1并行计算

不同的活动同时发生
将单个应用程序分散到多个核心/处理器/进程上,使其更快完成更大的计算任务
主要用于科学计算


1.5.2分布式计算

跨系统或远程服务器的活动
更关注并发性和资源共享


2、并行计算机分类

2.1Flynn经典分类法

从处理器的角度:基于指令和数据两个独立维度的计算机体系结构分类


2.2.1单指令单数据SISD

一个串行的计算机系统
单指令:在一个时钟周期内,CPU只对一个指令流进行操作
单数据:在一个时钟周期内,只有一个数据流用作输入
如:单核处理器


2.2.2单指令多数据SIMD

单指令:所有处理单元在任何给定的时钟周期执行相同的指令
多数据:每个处理器可以对不同的数据进行处理
如:GPU,向量处理器(X86 AVX instruction)


2.2.3多指令单数据MISD

多指令:每个处理单元通过单独的指令流独立地处理数据
单数据:单个数据流被送入多个处理单元
如:在CMU实验室测试,可用于容错


2.2.4多指令多数据MIMD

多指令:每个处理器执行不同地指令
多数据:每个处理器处理不同的数据流
如:现在大部分的计算机,如多核CPU


2.2内存结构分类

共享内存与分布式内存
在这里插入图片描述


2.2.1共享内存的多处理器系统

具有多个内部多核处理器的单台计算机
分为一致性内存访问UMA和非一致性内存访问NUMA


2.2.1.1一致性内存访问UMA

最常用的是对称多处理器SMP机器
相同的处理器、相同的内存访问时间,如商用服务器
在这里插入图片描述


2.2.1.2非一致性内存访问NUMA

通常通过物理连接的方式连接多个SMP
一个SMP可以直接访问另一个SMP、跨链接的内存访问相对较慢
如:HPC服务器
在这里插入图片描述


2.2.2多计算节点的分布式内存

连接多台计算机形成一个不共享内存的计算平台
可以让内存和CPU处于同一个Node,也可以处于不同node
①需要通信网络来连接处理器间存储器
②处理器有自己的内存和地址空间
③处理器所作的内存读写对其他处理器的内存没有影响
④不同处理器之间内存中数据的交换方式由程序员和编程模型定义


3、并行编程模型的分类

并行编程模型作为对硬件和内存结构的抽象而存在。
一般来说,编程模型的设计与计算机体系结构相匹配:
①共享内存编程模型对应共享内存模型
②消息传递编程模型对应分布式内存模型
但是编程模型并没有严格对应内存模型
①共享内存计算机上也可以支持消息传递模型,如单个服务器上可以使用MPI
②分布式内存的机器上也可以使用共享内存的编程模型,如分区全局地址空间


3.1共享内存编程模型

一个进程可以由多个并发执行路径;
线程具有局部数据,但也共享资源;
线程通过全局内存互相通信;
线程生产或者结束,但是主程序仍然提供必要的共享资源,直到应用程序完成
实现:
#在这里插入图片描述


3.2消息传递编程模型

在计算过程中使用本地内存的一组任务集
①多个任务可以驻留在同一物理计算机上和跨任意数量的计算机
②任务通过发送和接收消息通信交换数据


3.3比较

①共享内存
优点:可共享数据、与串行代码相似
缺点:缺少局部控制,不可扩展
②消息传递
优点:可扩展性、局部可控、通信过程在代码中可见
缺点:需要从全局考虑数据的结构和完整的应用、send和receive的对应问题

编程模型的设计和流行程度与并行系统是相互影响
OpenMP、MPI、Pthreads、CUDA只是用户进行并行编程的一部分编程语言


4、思考

在这里插入图片描述



推荐阅读
  • 2018年3月31日,CSDN、火星财经联合中关村区块链产业联盟等机构举办的2018区块链技术及应用峰会(BTA)核心分会场圆满举行。多位业内顶尖专家深入探讨了区块链的核心技术原理及其在实际业务中的应用。 ... [详细]
  • 非公版RTX 3080显卡的革新与亮点
    本文深入探讨了图形显卡的进化历程,重点介绍了非公版RTX 3080显卡的技术特点和创新设计。 ... [详细]
  • 资源推荐 | TensorFlow官方中文教程助力英语非母语者学习
    来源:机器之心。本文详细介绍了TensorFlow官方提供的中文版教程和指南,帮助开发者更好地理解和应用这一强大的开源机器学习平台。 ... [详细]
  • 数据库内核开发入门 | 搭建研发环境的初步指南
    本课程将带你从零开始,逐步掌握数据库内核开发的基础知识和实践技能,重点介绍如何搭建OceanBase的开发环境。 ... [详细]
  • Hadoop入门与核心组件详解
    本文详细介绍了Hadoop的基础知识及其核心组件,包括HDFS、MapReduce和YARN。通过本文,读者可以全面了解Hadoop的生态系统及应用场景。 ... [详细]
  • 深入解析:阿里实战 SpringCloud 微服务架构与应用
    本文将详细介绍 SpringCloud 在微服务架构中的应用,涵盖入门、实战和案例分析。通过丰富的代码示例和实际项目经验,帮助读者全面掌握 SpringCloud 的核心技术和最佳实践。 ... [详细]
  • 本文探讨了如何在日常工作中通过优化效率和深入研究核心技术,将技术和知识转化为实际收益。文章结合个人经验,分享了提高工作效率、掌握高价值技能以及选择合适工作环境的方法,帮助读者更好地实现技术变现。 ... [详细]
  • 深入理解一致性哈希算法及其应用
    本文详细介绍了分布式系统中的一致性哈希算法,探讨其原理、优势及应用场景,帮助读者全面掌握这一关键技术。 ... [详细]
  • 本文探讨了大数据生态系统的构建,重点介绍其分布式存储和运算机制,并补充相关技术及应用场景。 ... [详细]
  • 云计算的优势与应用场景
    本文详细探讨了云计算为企业和个人带来的多种优势,包括成本节约、安全性提升、灵活性增强等。同时介绍了云计算的五大核心特点,并结合实际案例进行分析。 ... [详细]
  • 本文探讨了Java编程的核心要素,特别是其面向对象的特性,并详细介绍了Java虚拟机、类装载器体系结构、Java类文件和Java API等关键技术。这些技术使得Java成为一种功能强大且易于使用的编程语言。 ... [详细]
  • 本文将介绍如何编写一些有趣的VBScript脚本,这些脚本可以在朋友之间进行无害的恶作剧。通过简单的代码示例,帮助您了解VBScript的基本语法和功能。 ... [详细]
  • 本文详细介绍了如何在Linux系统上安装和配置Smokeping,以实现对网络链路质量的实时监控。通过详细的步骤和必要的依赖包安装,确保用户能够顺利完成部署并优化其网络性能监控。 ... [详细]
  • 本文探讨了MariaDB在当前数据库市场中的地位和挑战,分析其可能面临的困境,并提出了对未来发展的几点看法。 ... [详细]
  • 在本周的白板演练中,Apache Flink 的 PMC 成员及数据工匠首席技术官 Stephan Ewen 深入探讨了如何利用保存点功能进行流处理中的数据重新处理、错误修复、系统升级和 A/B 测试。本文将详细解释保存点的工作原理及其应用场景。 ... [详细]
author-avatar
t53457078
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有