热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

高数小知识点(2)

转自:http:wenku.baidu.comlink?url6tcJ9kkC8SRkYTpLuhqweiz3oJm3cE_uRvRvFsozBGBWulUrwN4k

转自:http://wenku.baidu.com/link?url=6tcJ9kkC8SRkYTpLuhqweiz3oJm3cE_uRvRvFsozBGBWulUrwN4kEQvaPVF_uCxexGjP8E8N87tzp-oS3Z6oixsc3AgQoJucQivfGWc9FEi

1。偏导数

代数意义

偏导数是对一个变量求导,另一个变量当做数

对x求偏导的话y就看作一个数,描述的是x方向上的变化率

对y求偏导的话x就看作一个数,描述的是y方向上的变化率



几何意义

对x求偏导是曲面z=f(x,y)在x方向上的切线

对y求偏导是曲面z=f(x,y)在x方向上的切线



这里在补充点。就是因为偏导数只能描述x方向或y方向上的变化情况,但是我们要了解各个方向上的情况,所以后面有方向导数的概念。



2。微分

偏增量:x增加时f(x,y)增量或y增加时f(x,y)

偏微分:在detax趋进于0时偏增量的线性主要部分

detaz=fx(x,y)detax+o(detax)

右边等式第一项就是线性主要部分,就叫做在(x,y)点对x的偏微分

这个等式也给出了求偏微分的方法,就是用求x的偏导数求偏微分



全增量:x,y都增加时f(x,y)的增量

全微分:根号(detax方+detay方)趋于0时,全增量的线性主要部分

同样也有求全微分公式,也建立了全微分和偏导数的关系

dz=Adx+Bdy   其中A就是对x求偏导,B就是对y求偏导


导数和微分是两个概念,他们之间的关系就是上面所说的公式。概念上先有导数,再有微分,然后有了导数和微分的关系公式,公式同时也指明了求微分的方法。


3.全导数
全导数是在复合函数中的概念,和上面的概念不是一个系统,要分开。
u=a(t),v=b(t)
z=f[a(t),b(t)]
dz/dt 就是全导数,这是复合函数求导中的一种情况,只有这时才有全导数的概念。
dz/dt=(偏z/偏u)(du/dt)+(偏z/偏v)(dv/dt)



推荐阅读
author-avatar
名将箱包_714
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有