热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

概率图模型_概率图模型(CPD)

本文由编程笔记#小编为大家整理,主要介绍了概率图模型(CPD)相关的知识,希望对你有一定的参考价值。CPD是conditionalprobabilitydistributi
本文由编程笔记#小编为大家整理,主要介绍了概率图模型(CPD)相关的知识,希望对你有一定的参考价值。


CPD是conditional probability distribution的缩写,翻译成中文叫做 条件概率分布。在概率图中,条件概率分布是一个非常重要的概念。因为概率图研究的是随机变量之间的练习,练习就是条件,条件就要求条件概率。

  对于简单的条件概率而言,我们可以用一个条件概率表来表达。如图1所示。图1 中表达的是p(g|i,d)。幸运的是id都只有两个取值,是一个伯努利分布的函数。但是如果i d 有六个取值呢?比如骰子。那么这张表就会猛然增加到6^2那么长。这是不科学的。并且,常规情况下,仅考虑疾病诊断问题,如果有多种原因都会导致某个症状,那么我们要表达 症状|疾病 那么就会变得分成复杂,表有有2^N那么长,N是疾病的数目。

技术图片

技术图片

  所以,我们需要一种简单的方法,能够简化CPD的表达,除了用表之外,还应该有比较优雅的手段。


1.树状CPD

  很多随机变量依赖于多个随机变量,但这多个随机变量的优先级别都不一样。就像找对象,首先要是个学生,然后要漂亮,最后要聪明。这三个并不是同时要求的,所以树状结构的CPD就利用了这个思想,把各级“并联”变成了串联。本来job依赖于 c L ,但是L 又是依赖于c 的,所以就转成了树状的CPD.特点是该有的概率都在图里能读出来。但是却又另外指定了一些图里没有的逻辑关系。

技术图片


2.片选CPD

  片选CPD(Multiplexer CPD),实际上是对应一种情况:随机变量A一旦指定后,Y的取值就仅和其中一个父节点有关。这是一个实际问题,比如天上有很多飞机,它们的速度都是随机变量(Y),塔台指定一架飞机观测之后,随机变量Y就只与指定的那架飞机有关。那么条件概率就有以下表达:

技术图片


3.噪声或CPD

  噪声或CPD(Noise OR CPD)对应的情况是:咳嗽可能由很多因素引起,这些因素的或结果是咳嗽。 咳嗽<--感冒<---受凉。 但是受凉并不一定会感冒,也就是说,受凉不一定会导致咳嗽,那么相当于受凉和感冒之间存在一个噪声。这种情况下,咳嗽的概率就变成了1-不咳嗽的概率,不咳嗽的概率可以表示为乘积。

技术图片

  这里的或,也可以是与,也可以是取最大等等。。。。。总之,这一类设计方法对应的CPD可以简化表示。


4.Sigmoid CPD

  Sigmoid 是机器学习中的概念,还是接着上面那个例子,如果单纯用或,有时候太绝对了。直觉上我们有可能会认为,如果多个因素都会导致某个问题,那么多个因素共同发生的时候就会让问题“雪上加霜”。 比如单纯的丑不一定找不到女朋友,丑+猥琐? 丑+坏+犯罪? 显然我们应该设计一个打分体系,女朋友这个随机变量变成多个因素的函数。简单考虑所有的条件都是二项分布的(要么帅要么丑)各个条件对女朋友的影响不同,用权重wi来表示。最终,将加权结果用 Sigmoid函数来评判。

 

技术图片

技术图片


5. 线性高斯CPD

  上述情况我们都把随机变量当成离散的来考虑。然后真实世界里,哪有那么多非黑即白的情况呢。比如一个机器人从多个传感器测量距离墙壁的距离(Xi),最终需要融合多个传感器的数据,估计距离墙壁的真实距离(Y),那么实际上就是一个 P(Y|X1,X2,X3.....)的问题。我们可以用线性高斯模型,来给出Y的概率。

技术图片

  这里非常值得注意的是,所有的X,也可以是高斯的。但是Y的均值应该是X的均值之和。并且假设Y的方差不受到X方差的影响。


6.总结

  这一章节实际上是为了解决多变量条件下,条件概率表达式的复杂性问题。 单纯的基于图模型的因式分解确实可以大规模的减少概率模型中的因子 ( 链 --->  贝叶斯链)。 但是如果再给出一些其他假设,或者选择合适的建模手段,条件概率的表达式复杂程度又可以进一步降低。

 


推荐阅读
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • 本文将介绍如何编写一些有趣的VBScript脚本,这些脚本可以在朋友之间进行无害的恶作剧。通过简单的代码示例,帮助您了解VBScript的基本语法和功能。 ... [详细]
  • 资源推荐 | TensorFlow官方中文教程助力英语非母语者学习
    来源:机器之心。本文详细介绍了TensorFlow官方提供的中文版教程和指南,帮助开发者更好地理解和应用这一强大的开源机器学习平台。 ... [详细]
  • 本文详细介绍了如何在Linux系统上安装和配置Smokeping,以实现对网络链路质量的实时监控。通过详细的步骤和必要的依赖包安装,确保用户能够顺利完成部署并优化其网络性能监控。 ... [详细]
  • 数据管理权威指南:《DAMA-DMBOK2 数据管理知识体系》
    本书提供了全面的数据管理职能、术语和最佳实践方法的标准行业解释,构建了数据管理的总体框架,为数据管理的发展奠定了坚实的理论基础。适合各类数据管理专业人士和相关领域的从业人员。 ... [详细]
  • 本文详细介绍了 Dockerfile 的编写方法及其在网络配置中的应用,涵盖基础指令、镜像构建与发布流程,并深入探讨了 Docker 的默认网络、容器互联及自定义网络的实现。 ... [详细]
  • 在前两篇文章中,我们探讨了 ControllerDescriptor 和 ActionDescriptor 这两个描述对象,分别对应控制器和操作方法。本文将基于 MVC3 源码进一步分析 ParameterDescriptor,即用于描述 Action 方法参数的对象,并详细介绍其工作原理。 ... [详细]
  • 本文将介绍由密歇根大学Charles Severance教授主讲的顶级Python入门系列课程,该课程广受好评,被誉为Python学习的最佳选择。通过生动有趣的教学方式,帮助初学者轻松掌握编程基础。 ... [详细]
  • 本文详细介绍了Akka中的BackoffSupervisor机制,探讨其在处理持久化失败和Actor重启时的应用。通过具体示例,展示了如何配置和使用BackoffSupervisor以实现更细粒度的异常处理。 ... [详细]
  • Android 渐变圆环加载控件实现
    本文介绍了如何在 Android 中创建一个自定义的渐变圆环加载控件,该控件已在多个知名应用中使用。我们将详细探讨其工作原理和实现方法。 ... [详细]
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • Google最新推出的嵌入AI技术的便携式相机Clips现已上架,旨在通过人工智能技术自动捕捉用户生活中值得纪念的时刻,帮助人们减少照片数量过多的问题。 ... [详细]
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
  • 本文详细介绍了Java中org.neo4j.helpers.collection.Iterators.single()方法的功能、使用场景及代码示例,帮助开发者更好地理解和应用该方法。 ... [详细]
  • 探索如何使用公共数据集为您的编程项目提供动力。无论您是编程新手还是有经验的开发者,本文将为您提供实用建议和资源,帮助您启动并运行一个创新的数据驱动型项目。 ... [详细]
author-avatar
萤之光
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有