热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

《概率论入门精讲》:深入解析样本空间、概率计算与条件概率概念

《概率论入门精讲》不仅详细介绍了排列组合的基本公式,包括二项式系数、多项式系数以及方程解的个数,还深入探讨了这些公式的应用技巧和问题转化方法。此外,本书对样本空间的概念进行了全面解析,帮助读者理解如何在实际问题中构建和应用样本空间,为进一步学习概率计算与条件概率打下坚实基础。

一、排列组合

基本三个公式:
1、二项式系数
这里写图片描述
2、多项式系数
这里写图片描述
3、方程解的个数
这里写图片描述

这里写图片描述

难度不大,解题中注意问题的转化。


二、样本空间

样本空间:考虑一个实验,所有可能结果构成的子集,称为该实验的样本空间。
这个定义就说明了样本空间的概率是1。

事件:样本空间的任意子集称为事件。

集合运算:
因为事件是集合,所以概率计算中就需要用到集合的各种运算,总结如下:
1、交并补
2、交换律、结合律、分配率。
3、德摩根定律。
这里写图片描述
4、推演出的常用公式:
这里写图片描述
这个公式推广以后就可以说明全概率公式的正确性。

这里写图片描述
可以推广到更多个事件。
上面两个公式很有用,因为求并集的每个事件之间都是互斥的。

互斥事件
两个事件 E F 互斥(不相容),满足EF = 空集。也就是说两个事件不可能同时发生。


三、概率

笼统的讲,有两种概率。第一种是熟知的事件发生的相对频率取极限之后收敛的值。第二种是主观概率,是可信度的度量。

如果用数学语言来定义概率呢?
概率是定义在样本空间中的事件上的集函数,满足三个公理。
1、概率值非负,不大于1。
2、样本空间概率为1。
3、不相容事件并的概率,是每个事件概率的和。

概率的演算公式
1、包含关系
这里写图片描述
看起来简单,证明一下呢?

2、补集
这里写图片描述

3、交集(intersection)
事件交集的概率并不能从事件的概率求出来。除非事件是相互独立的。

4、并集(union)
这里写图片描述
推广一下,就成了容斥公式:
这里写图片描述

5、布尔不等式
这里写图片描述
可以从容斥公式推出。

概率的计算
一般直接计算事件概率的方法(不是从其他事件推理出),是统计事件包括的样本空间结果数量,除以样本空间所有结果的数量。这里有一个假设是,样本空间里每一个结果出现的概率是一样的。很多情况下,即是不说明,这个假设都应该是存在的。

目前,概率的计算就是算出两个排列组合的值,然后相除。后面的很多情况下,新的事件概率是从已知的概率推理出来的,这可以算两个不同的概率计算模式。


四、条件概率

条件概率相关的公式
1、条件概率的定义
这里写图片描述
一个变化的公式也很常用
这里写图片描述

2、乘法规则
这里写图片描述
连续使用条件概率定义的公式,可以证明正确性。

3、贝叶斯公式
这里写图片描述
忘记机器学习里关于贝叶斯公式的东西,从简单的问题来理解贝叶斯公式。

假如有n个事件,每个事件记为Fj,这些事件的概率都已知。也就是P(Fj),这个被称为先验概率(就是最初的概率嘛)。
这种情况下,突然发生了一个事件E,此时要求E为条件的情况下Fj的概率,也就是后验概率。

考虑Fj是n个对同一个问题的不同假设(比如某人是否是癌症病人),每种假设有一个先验概率。当观察到一个事件E时,E能够对不同假设产生不同效果(比如肺部有一大片阴影这个事件会提高病人得了癌症的概率)。所以E也叫做证据。根据证据我们就可以修正原来假设的概率,修正后的概率就是后验概率。

简单说,贝叶斯公式是根据观察到的证据修正假设的概率的方法。

举个例子说明概率修正的意思。你去买彩票,中头奖的概率是已知的吧。开奖那天你无意中知道除了最后一个数字外,你买的彩票和头奖的开奖结果一模一样。这时,你对中头奖的预期就被大大提高了。这就是已知的证据修正了你对是否中头奖这个问题的假设的概率。

4、优势比
事件A发生的概率和A不发生的概率的比值是事件A的优势比。
这里写图片描述

这里写图片描述
这个公式可以认为是证据修正事件优势比的公式。由贝叶斯公式推出。

5、全概率公式
这里写图片描述
其中Fi两两之间是不相容的。这就是贝叶斯公式等号右边的分母的部分。

独立事件
从上面贝叶斯公式的讨论中知道,证据事件E会修正已有事件F的概率,也就是说P(F | E)一般不等于P( F )。如果E不能对F产生影响的话,那么就认为E,F两个事件是独立的。有公式:

P( F | E ) = P( F )

换种表达:
这里写图片描述

如果三个事件之间互相独立,有:
这里写图片描述

独立性推广到任意个事件之间:
这里写图片描述

概率独立性重要的原因在于很多的试验由一连串的重复试验组成的,试验之间彼此相同且相互独立的,也就是独立同分布。独立事件的定义保证了在计算一个独立同分布的重复试验的结果时,可以由每个事件的概率的乘积得到。

条件概率满足概率的所有定义
条件概率的定义满足概率的三个公理,在给定条件的情况下,事件的条件概率就是一个概率。

有点废话的感觉,换作用公式表示:P(F | E) = Q( F )。就是说E为条件下F的概率可以看做另一个F的概率函数。这个函数Q满足概率的所有定义和演算公式。所以条件概率上也可以使用上述的概率演算公式。上述概率演算公式中,每一个概率表达式中,都添加一个相同的条件,就得到条件概率的演算公式了。

条件独立(条件概率的独立)
既然条件概率是一个概率了,当然也可以计算条件概率和拥有独立性。思路类似:
这里写图片描述
如果把条件F去掉,就成了普通的独立事件公式了。

另外验证条件概率的条件概率:
P( E1 | E2F ) = P( E1E2 | F ) / P( E2 | F )
看,如果把F条件去掉,是不是就成了普通的条件概率的公式。以上两个结论都证明了条件概率满足概率的所有定义这个事实。


五、难点

1、事件的互斥性和独立性。
关于两个事件的以下结论成立:
互不相容一定不独立
独立一定相容

PS:一个没想通的问题
命题:若P( A | B ) = 1,则B 属于A。该命题成立吗?如果不成立,正确的推论应该是什么呢?


推荐阅读
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 机器学习核心概念与技术
    本文系统梳理了机器学习的关键知识点,涵盖模型评估、正则化、线性模型、支持向量机、决策树及集成学习等内容,并深入探讨了各算法的原理和应用场景。 ... [详细]
  • 本文旨在探讨如何利用决策树算法实现对男女性别的分类。通过引入信息熵和信息增益的概念,结合具体的数据集,详细介绍了决策树的构建过程,并展示了其在实际应用中的效果。 ... [详细]
  • QUIC协议:快速UDP互联网连接
    QUIC(Quick UDP Internet Connections)是谷歌开发的一种旨在提高网络性能和安全性的传输层协议。它基于UDP,并结合了TLS级别的安全性,提供了更高效、更可靠的互联网通信方式。 ... [详细]
  • 本文介绍如何使用 Python 将一个字符串按照指定的行和元素分隔符进行两次拆分,最终将字符串转换为矩阵形式。通过两种不同的方法实现这一功能:一种是使用循环与 split() 方法,另一种是利用列表推导式。 ... [详细]
  • 资源推荐 | TensorFlow官方中文教程助力英语非母语者学习
    来源:机器之心。本文详细介绍了TensorFlow官方提供的中文版教程和指南,帮助开发者更好地理解和应用这一强大的开源机器学习平台。 ... [详细]
  • 技术分享:从动态网站提取站点密钥的解决方案
    本文探讨了如何从动态网站中提取站点密钥,特别是针对验证码(reCAPTCHA)的处理方法。通过结合Selenium和requests库,提供了详细的代码示例和优化建议。 ... [详细]
  • 深入解析:手把手教你构建决策树算法
    本文详细介绍了机器学习中广泛应用的决策树算法,通过天气数据集的实例演示了ID3和CART算法的手动推导过程。文章长度约2000字,建议阅读时间5分钟。 ... [详细]
  • Google最新推出的嵌入AI技术的便携式相机Clips现已上架,旨在通过人工智能技术自动捕捉用户生活中值得纪念的时刻,帮助人们减少照片数量过多的问题。 ... [详细]
  •   上一篇博客中我们说到线性回归和逻辑回归之间隐隐约约好像有什么关系,到底是什么关系呢?我们就来探讨一下吧。(这一篇数学推导占了大多数,可能看起来会略有枯燥,但这本身就是一个把之前算法 ... [详细]
  • 尽管深度学习带来了广泛的应用前景,其训练通常需要强大的计算资源。然而,并非所有开发者都能负担得起高性能服务器或专用硬件。本文探讨了如何在有限的硬件条件下(如ARM CPU)高效运行深度神经网络,特别是通过选择合适的工具和框架来加速模型推理。 ... [详细]
  • 基于机器学习的人脸识别系统实现
    本文介绍了一种使用机器学习技术构建人脸识别系统的实践案例。通过结合Python编程语言和深度学习框架,详细展示了从数据预处理到模型训练的完整流程,并提供了代码示例。 ... [详细]
  • Python 工具推荐 | PyHubWeekly 第二十一期:提升命令行体验的五大工具
    本期 PyHubWeekly 为大家精选了 GitHub 上五个优秀的 Python 工具,涵盖金融数据可视化、终端美化、国际化支持、图像增强和远程 Shell 环境配置。欢迎关注并参与项目。 ... [详细]
author-avatar
育诚家瑋逸群
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有