热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

【GLSL教程】(六)逐顶点的光照

引言在OpenGL中有三种类型的光:方向光(directional)、点光(point)、聚光(spotlight)。本教程将从方向光讲起,首先我们将使用GLSL来模仿OpenGL中的光。我们将向sh
引言
在OpenGL中有三种类型的光:方向光(directional)、点光(point)、聚光(spotlight)。本教程将从方向光讲起,首先我们将使用GLSL来模仿OpenGL中的光。
我们将向shader中逐渐添加环境光、散射光和高光效果。

后面的教程中我们将使用逐像素光照以获得更好的效果。

接下来我们将实现逐像素的点光和聚光。这些内容与方向光很相近,大部分代码都是通用的。

在卡通着色的教程中我们接触过在GLSL中如何访问OpenGL状态中关于光源的部分,这些数据描述了每个光源的参数。
struct gl_LightSourceParameters
{
vec4 ambient;
vec4 diffuse;
vec4 specular;
vec4 position;
vec4 halfVector;
vec3 spotDirection;
float spotExponent;
float spotCutoff; // (range: [0.0,90.0], 180.0)
float spotCosCutoff; // (range: [1.0,0.0],-1.0)
float constantAttenuation;
float linearAttenuation;
float quadraticAttenuation;
};

uniform gl_LightSourceParameters gl_LightSource[gl_MaxLights];
struct gl_LightModelParameters
{
vec4 ambient;
};
uniform gl_LightModelParameters gl_LightModel;
在GLSL中也同样可以访问材质参数:
struct gl_MaterialParameters
{
vec4 emission;
vec4 ambient;
vec4 diffuse;
vec4 specular;
float shininess;
};

uniform gl_MaterialParameters gl_FrontMaterial;
uniform gl_MaterialParameters gl_BackMaterial;
在OpenGL程序中,这些参数中的大部分,不论属于光源还是材质,用起来都是相似的。我们将使用这些参数实现自己的方向光。

方向光I
本节的公式来自《OpenGL编程指南》中“和光照有关的数学知识”这一章。
我们从散射光开始讨论。在OpenGL中假定,不管观察者的角度如何,得到的散射光强度总是相同的。散射光的强度与光源中散射光成分以及材质中散射光反射系数相关,此外也和入射光角度与物体表面法线的夹角相关。

OpenGL用下面的公式计算散射光成分:

I是反射光的强度,Ld是光源的散射成分(gl_LightSource[0].diffuse),Md是材质的散射系数(gl_FrontMaterial.diffuse)。
这个公式就是Lambert漫反射模型。Lambert余弦定律描述了平面散射光的亮度,正比于平面法线与入射光线夹角的余弦,这一理论提出已经超过200年了。
在顶点shader中要实现这个公式,需要用到光源参数中的方向、散射成分强度,还要用到材质中的散射成分值。因此使用此shader时,在OpenGL中需要像在平时一样设置好光源。注意:由于没有使用固定功能流水线,所以不需要对光源调用glEnable。
要计算余弦值,首先要确保光线方向向量(gl_LightSource[0].position)与法线向量都是归一化的,然后就可以使用点积得到余弦值。注意:对方向光,OpenGL中保存的方向是从顶点指向光源,与上面图中画的相反。
OpenGL将光源的方向保存在视点空间坐标系内,因此我们需要把法线也变换到视点空间。完成这个变换可以用预先定义的一致变量gl_NormalMatrix。这个矩阵是模型视图变换矩阵的左上3×3子矩阵的逆矩阵的转置。
以下就是上述内容的顶点shader代码:
void main()
{
vec3 normal, lightDir;
vec4 diffuse;
float NdotL;

/* first transform the normal into eye space and normalize the result */
normal = normalize(gl_NormalMatrix * gl_Normal);
/* now normalize the light's direction. Note that according to the
OpenGL specification, the light is stored in eye space. Also since
we're talking about a directional light, the position field is actually
direction */
lightDir = normalize(vec3(gl_LightSource[0].position));
/* compute the cos of the angle between the normal and lights direction.
The light is directional so the direction is constant for every vertex.
Since these two are normalized the cosine is the dot product. We also
need to clamp the result to the [0,1] range. */
NdotL = max(dot(normal, lightDir), 0.0);
/* Compute the diffuse term */
diffuse = gl_FrontMaterial.diffuse * gl_LightSource[0].diffuse;
gl_FrOntColor= NdotL * diffuse;

gl_Position = ftransform();
}
在片断shader中要做的就是使用易变变量gl_Color设置颜色。
void main()
{
gl_FragColor = gl_Color;
}
下图显示了应用此shader的茶壶效果。注意茶壶的底部非常黑,这是因为还没有使用环境光的缘故。

加入环境光非常容易,只需要使用一个全局的环境光参数以及光源的环境光参数即可,公式如下所示:

前面的顶点shader中需要加入几条语句完成环境光的计算:
void main()
{
vec3 normal, lightDir;
vec4 diffuse, ambient, globalAmbient;
float NdotL;

normal = normalize(gl_NormalMatrix * gl_Normal);
lightDir = normalize(vec3(gl_LightSource[0].position));
NdotL = max(dot(normal, lightDir), 0.0);
diffuse = gl_FrontMaterial.diffuse * gl_LightSource[0].diffuse;
/* Compute the ambient and globalAmbient terms */
ambient = gl_FrontMaterial.ambient * gl_LightSource[0].ambient;
globalAmbient = gl_FrontMaterial.ambient * gl_LightModel.ambient;
gl_FrOntColor= NdotL * diffuse + globalAmbient + ambient;

gl_Position = ftransform();
}
下图显示了最终效果。加入环境光后整个画面都变亮了,不过相对于应用了反射光效果的全局光照模型(global illumination model),这种计算环境光的方式只能算廉价的解决方案。


方向光II
下面介绍OpenGL方向光中的镜面反射部分。我们使用称为Blin-Phong模型的光照模型,这是Phong模型的简化版。在这之前,我们有必要先看看Phong模型,以便于更好地理解Blin-Phong模型。
在Phong模型中,镜面反射成分和反射光线与视线夹角的余弦相关,如下图:

L表示入射光,N表示法线,Eye表示从顶点指向观察点的视线,R是L经镜面反射后的结果,镜面反射成分与α角的余弦相关。
如果视线正好和反射光重合,我们将接收到最大的反射强度。当视线与反射光相分离时,反射强度将随之下降,下降速率可以由一个称为shininess的因子控制,shininess的值越大,下降速率越快。也就是说,shininess越大的话,镜面反射产生的亮点就越小。在OpenGL中这个值的范围是0到128。

计算反射光向量的公式:

OpenGL中使用Phong模型计算镜面反射成分的公式:

式中指数s就是shininess因子,Ls是光源中镜面反射强度,Ms是材质中的镜面反射系数。
Blinn提出了一种简化的模型,也就是Blinn-Phong模型。它基于半向量(half-vector),也就是方向处在观察向量以及光线向量之间的一个向量:

现在可以利用半向量和法线之间夹角的余弦来计算镜面反射成分。OpenGL所使用的Blinn-Phong模型计算镜面反射的公式如下:

这个方法与显卡的固定流水线中使用的方法相同。因为我们要模拟OpenGL中的方向光,所以在shader中也使用此公式。幸运的是:OpenGL会帮我们算半向量,我们只需要使用下面的代码:
/* compute the specular term if NdotL is  larger than zero */
if (NdotL > 0.0)
{
// normalize the half-vector, and then compute the
// cosine (dot product) with the normal
NdotHV = max(dot(normal, gl_LightSource[0].halfVector.xyz),0.0);
specular = gl_FrontMaterial.specular * gl_LightSource[0].specular *
pow(NdotHV,gl_FrontMaterial.shininess);
}
完整的Shader Designer工程下载:
http://lighthouse3d.com/wptest/wp-content/uploads/2011/03/ogldirsd.zip



推荐阅读
  • 本文介绍了如何在iOS平台上使用GLSL着色器将YV12格式的视频帧数据转换为RGB格式,并展示了转换后的图像效果。通过详细的技术实现步骤和代码示例,读者可以轻松掌握这一过程,适用于需要进行视频处理的应用开发。 ... [详细]
  • Android 构建基础流程详解
    Android 构建基础流程详解 ... [详细]
  • 数字图书馆近期展出了一批精选的Linux经典著作,这些书籍虽然部分较为陈旧,但依然具有重要的参考价值。如需转载相关内容,请务必注明来源:小文论坛(http://www.xiaowenbbs.com)。 ... [详细]
  • 在尝试对 QQmlPropertyMap 类进行测试驱动开发时,发现其派生类中无法正常调用槽函数或 Q_INVOKABLE 方法。这可能是由于 QQmlPropertyMap 的内部实现机制导致的,需要进一步研究以找到解决方案。 ... [详细]
  • 在C#中,一旦对象被实例化后,直接重新调用构造函数是不可行的。与C++不同,C#不支持在对象实例化后强制调用构造函数。为了实现类似的功能,可以通过定义一个重置方法或使用工厂模式来重新初始化对象的状态。例如,可以创建一个 `Reset` 方法,在该方法中重新设置对象的属性和状态,从而达到类似于重新调用构造函数的效果。这样不仅保持了代码的清晰性和可维护性,还避免了潜在的副作用。 ... [详细]
  • 本文介绍了一种自定义的Android圆形进度条视图,支持在进度条上显示数字,并在圆心位置展示文字内容。通过自定义绘图和组件组合的方式实现,详细展示了自定义View的开发流程和关键技术点。示例代码和效果展示将在文章末尾提供。 ... [详细]
  • 提升视觉效果:Unity3D中的HDR与Bloom技术(高动态范围成像与光线散射)
    提升视觉效果:Unity3D中的HDR与Bloom技术(高动态范围成像与光线散射) ... [详细]
  • 本文详细解析了 Android 系统启动过程中的核心文件 `init.c`,探讨了其在系统初始化阶段的关键作用。通过对 `init.c` 的源代码进行深入分析,揭示了其如何管理进程、解析配置文件以及执行系统启动脚本。此外,文章还介绍了 `init` 进程的生命周期及其与内核的交互方式,为开发者提供了深入了解 Android 启动机制的宝贵资料。 ... [详细]
  • Java Socket 关键参数详解与优化建议
    Java Socket 的 API 虽然被广泛使用,但其关键参数的用途却鲜为人知。本文详细解析了 Java Socket 中的重要参数,如 backlog 参数,它用于控制服务器等待连接请求的队列长度。此外,还探讨了其他参数如 SO_TIMEOUT、SO_REUSEADDR 等的配置方法及其对性能的影响,并提供了优化建议,帮助开发者提升网络通信的稳定性和效率。 ... [详细]
  • Spring框架中枚举参数的正确使用方法与技巧
    本文详细阐述了在Spring Boot框架中正确使用枚举参数的方法与技巧,旨在帮助开发者更高效地掌握和应用枚举类型的数据传递,适合对Spring Boot感兴趣的读者深入学习。 ... [详细]
  • 在C++程序中,文档A的每一行包含一个结构体数据,其中某些字段可能包含不同数量的数字。需要将这些结构体数据逐行读取并存储到向量中,随后不仅在控制台上显示,还要输出到新创建的文档B中。希望得到指导,感谢! ... [详细]
  • 在使用 Qt 进行 YUV420 图像渲染时,由于 Qt 本身不支持直接绘制 YUV 数据,因此需要借助 QOpenGLWidget 和 OpenGL 技术来实现。通过继承 QOpenGLWidget 类并重写其绘图方法,可以利用 GPU 的高效渲染能力,实现高质量的 YUV420 图像显示。此外,这种方法还能显著提高图像处理的性能和流畅性。 ... [详细]
  • 在Android平台中,播放音频的采样率通常固定为44.1kHz,而录音的采样率则固定为8kHz。为了确保音频设备的正常工作,底层驱动必须预先设定这些固定的采样率。当上层应用提供的采样率与这些预设值不匹配时,需要通过重采样(resample)技术来调整采样率,以保证音频数据的正确处理和传输。本文将详细探讨FFMpeg在音频处理中的基础理论及重采样技术的应用。 ... [详细]
  • 题目要求维护一个数列,并支持两种操作:一是查询操作,语法为QL,用于查询数列末尾L个数中的最大值;二是更新操作,用于修改数列中的某个元素。本文通过ST表(Sparse Table)优化查询效率,确保在O(1)时间内完成查询,同时保持较低的预处理时间复杂度。 ... [详细]
  • 全局变量与常量在内存中的布局分析及应用
    本文详细探讨了全局变量与常量在内存中的存储布局及其应用。通过分析不同编译器和操作系统对全局变量与常量的处理方式,揭示了它们在内存中的具体分配机制。此外,文章还讨论了这些布局对程序性能和安全的影响,并提供了优化建议,帮助开发者更好地理解和利用全局变量与常量的内存管理。 ... [详细]
author-avatar
WingKeii-
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有