热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

飞桨与海光人工智能加速卡DCU系列完成互证,助力国产AI加速卡人工智能应用创新...

飞,桨,与,海,光,人工智能,加速,卡,dcu,系列,完成,互,证,助力,国产,ai,加速,卡,

近日,百度飞桨深度学习框架与海光人工智能加速卡DCU系列进行了安装部署测试、基本功能测试和稳定性兼容性测试,联合测试结果显示百度飞桨深度学习框架在海光DCU系列以及海光3000、5000、7000系列CPU环境上均能顺利安装,可以可靠、稳定、高性能地运行,满足用户的关键性应用需求。

00ddf1314dde6fbc53de256a66c7d97b.png

图1:飞桨与海光DCU生态兼容性认证证书

其中,DCU(Deep Computing Unit 深度计算器)是海光(HYGON)推出的一款专门用于AI人工智能和深度学习的加速卡。目前飞桨框架ROCm版基于海光CPU(X86)和DCU支持以下模型的单机单卡/单机多卡的训练与推理。

飞桨框架ROCm版安装说明及测试环境说明:

本次适配及测试工作是由飞桨团队和海光团队基于海光7000系列CPU以及海光DCU-Z100深度计算处理器芯片,在CentOS7.6操作系统下进行了相关性测试。目前飞桨框架ROCm版支持基于海光CPU和DCU的Python的训练和原生预测,当前支持的飞桨框架ROCm版本为4.0.1, 飞桨框架版本为2.1.0,提供两种安装方式:

  • 通过预编译的wheel包安装

  • 通过源代码编译安装

软件名称

版本号

Python

3.7.9

Cmake

3.16.0

gcc (Debian 8.3.0-6.lnd.vec.20)

7.3.1

Git

2.17.1

OpenBLAS

0.3.5-1

Protobuf

3.6.1.3-2

Pip

20.2.4

飞桨深度学习框架

2.1.0

表1:软件环境

项目

数量

硬件环境

软件环境

服务器

1台

•双路海光7285 32核CPU

•支持8块DCU Z100

•支持512G DDR4内存

•支持4块960G SATA SSD

•2+2冗余2000W电源模块

操作系统:CentOS7.6

表2:硬件环境

飞桨框架ROCm版支持模型:

当前在海光DCU芯片上进行过80+模型的官方验证,验证包括有图像分类(PaddleClas)、目标检测(PaddleDetection)、图像分割(PaddleSeg)、文字识别(PaddleOCR)、生成对抗网络(PaddleGAN)、自然语言处理(PaddleNLP)、推荐(PaddleRec)、语音(Parakeet)类别的模型。下表是支持的部分目标检测类模型的情况,完整支持信息请见:

飞桨官网 > 文档 >使用教程 >硬件支持 > 海光DCU芯片运行飞桨 > 飞桨框架ROCm版支持模型。

(文档链接:

https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/09_hardware_support/rocm_docs/paddle_rocm_cn.html )

飞桨框架ROCm版训练及预测:

训练:使用海光CPU/DCU进行训练与使用Intel CPU/Nvidia GPU训练相同,当前飞桨框架ROCm版本完全兼容飞桨框架 CUDA版本的API,直接使用原有的GPU训练命令和参数即可。

预测:使用海光CPU/DCU进行预测与使用Intel CPU/Nvidia GPU预测相同,支持飞桨原生推理库(Paddle Inference),适用于高性能服务器端、云端推理。当前飞桨框架 ROCm版本完全兼容飞桨框架 CUDA版本的 C++/Python API,直接使用原有的GPU预测命令和参数即可。

完整训练及预测示例可参考官网海光DCU芯片运行飞桨文档。

40815130ef9dfcb47c56584d9b68a031.png

海光信息技术股份有限公司(以下简称“海光公司”)自主研发的人工智能加速卡DCU系列可以全面覆盖支持深度学习训练场景,轻松应对复杂神经网络训练,适合为人工智能计算提供强大的算力。产品已经大量应用在电信、金融、教育、科研、人工智能等重要领域。

9307291da6fe1081f95e7dccfa702465.png

北京百度网讯科技有限公司(以下简称“百度公司”)自主研发的深度学习平台飞桨,以百度多年的深度学习技术研究和业务应用为基础,集深度学习核心训练和推理框架、基础模型库、端到端开发套件、丰富的工具组件于一体,是中国首个自主研发、功能丰富、开源开放的产业级深度学习平台。

本次百度飞桨深度学习框架与海光人工智能加速卡DCU系列完成互认证,将进一步提升双方在国产软、硬件领域的产品竞争力,不断完善产品性能的同时,为客户提升AI平台支撑能力,助力客户实现数字化、智能化升级转型。

长按下方二维码立即

Star

2f8da647747de925d21d0fec8eb2dc9e.png

更多信息:

  1. 飞桨官方QQ群:793866180

  2. 飞桨官网网址:

    www.paddlepaddle.org.cn/

  3. 飞桨开源框架项目地址:

    GitHub:

    github.com/PaddlePaddle/Paddle 
    Gitee:

    gitee.com/paddlepaddle/Paddle

  4. 欢迎在飞桨论坛讨论交流~~

    http://discuss.paddlepaddle.org.cn

本文同步分享在 博客“飞桨PaddlePaddle”(CSDN)。
如有侵权,请联系 support@oschina.cn 删除。
本文参与“OSC源创计划”,欢迎正在阅读的你也加入,一起分享。


推荐阅读
  • 本文详细介绍了如何在 Ubuntu 14.04 系统上搭建仅使用 CPU 的 Caffe 深度学习框架,包括环境准备、依赖安装及编译过程。 ... [详细]
  • VMware 15.5.7 中文版激活方法
    本文提供了一种有效的方法来激活 VMware 15.5.7 的中文版本,同时介绍了如何利用最新的激活码进行操作,确保用户能够顺利使用。 ... [详细]
  • 本文详细介绍了 Node.js 中 OS 模块的 arch 方法,包括其功能、语法、参数以及返回值,并提供了具体的使用示例。 ... [详细]
  • 第七章 边沿检测技术的重要性与实践
    本文探讨了边沿检测技术在FPGA设计中的重要性及其实际应用案例。通过个人经历和具体实例,详细解析了边沿检测的原理、实现方法及其优化策略。 ... [详细]
  • 本文探讨了如何使Shell和程序同时响应Ctrl-C信号的方法,即通过将两者置于同一进程组并将其设为终端的前台进程组。 ... [详细]
  • 本文介绍如何使用 Arcade 库在 Python 中绘制太阳,包括环境配置、基础图形绘制方法及具体代码示例。 ... [详细]
  • 本文详细探讨了32位与64位操作系统的区别,包括设计目的、硬件需求、性能表现、内存管理和软件生态等方面,旨在帮助用户更好地理解两种系统的特点及适用场景。 ... [详细]
  • STM32代码编写STM32端不需要写关于连接MQTT服务器的代码,连接的工作交给ESP8266来做,STM32只需要通过串口接收和发送数据,间接的与服务器交互。串口三配置串口一已 ... [详细]
  • SSE图像算法优化系列三:超高速导向滤波实现过程纪要(欢迎挑战)
    自从何凯明提出导向滤波后,因为其算法的简单性和有效性,该算法得到了广泛的应用,以至于新版的matlab都将其作为标准自带的函数之一了&#x ... [详细]
  • 视觉Transformer综述
    本文综述了视觉Transformer在计算机视觉领域的应用,从原始Transformer出发,详细介绍了其在图像分类、目标检测和图像分割等任务中的最新进展。文章不仅涵盖了基础的Transformer架构,还深入探讨了各类增强版Transformer模型的设计思路和技术细节。 ... [详细]
  • 吴石访谈:腾讯安全科恩实验室如何引领物联网安全研究
    腾讯安全科恩实验室曾两次成功破解特斯拉自动驾驶系统,并远程控制汽车,展示了其在汽车安全领域的强大实力。近日,该实验室负责人吴石接受了InfoQ的专访,详细介绍了团队未来的重点方向——物联网安全。 ... [详细]
  • 本文将详细探讨 Python 编程语言中 sys.argv 的使用方法及其重要性。通过实际案例,我们将了解如何在命令行环境中传递参数给 Python 脚本,并分析这些参数是如何被处理和使用的。 ... [详细]
  • H5技术实现经典游戏《贪吃蛇》
    本文将分享一个使用HTML5技术实现的经典小游戏——《贪吃蛇》。通过H5技术,我们将探讨如何构建这款游戏的两种主要玩法:积分闯关和无尽模式。 ... [详细]
  • Node.js在服务器上的多种部署策略
    本文探讨了Node.js应用程序在服务器上部署的几种有效方法,包括使用Screen、PM2以及通过宝塔面板进行简易管理。 ... [详细]
  • 知识图谱与图神经网络在金融科技中的应用探讨
    本文详细介绍了融慧金科AI Lab负责人张凯博士在2020爱分析·中国人工智能高峰论坛上的演讲,探讨了知识图谱与图神经网络模型如何在金融科技领域发挥重要作用。 ... [详细]
author-avatar
mobiledu2502883647
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有