热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

“二叉树”相关题目

 ******************************************二叉树的问题,一定要明白到底应该深度优先(前中后序)还是广度优先(层序遍历)最基本的遍历方式:

 /******************************************/

二叉树的问题,一定要明白到底应该深度优先(前中后序)还是广度优先(层序遍历)

最基本的遍历方式:深度优先和广度优先

  深度优先:前、中、后序(递归法和迭代法均可)

  广度优先:层次遍历(迭代法)

其实就是递归的一种实现结构,也就是说前中后序遍历的逻辑其实都是可以借助栈使用非递归的方式来实现的;

广度优先遍历(层序遍历)的实现一般使用队列来实现,这也是队列先进先出的特点所决定的,因为需要先进先出的结构,才能一层一层的来遍历二叉树。力扣102题

递归算法的三要素:

  1. 「确定递归函数的参数和返回值:」确定哪些参数是递归的过程中需要处理的,那么就在递归函数里加上这个参数, 并且还要明确每次递归的返回值是什么进而确定递归函数的返回类型。

  2. 「确定终止条件:」写完了递归算法,  运行的时候,经常会遇到栈溢出的错误,就是没写终止条件或者终止条件写的不对,操作系统也是用一个栈的结构来保存每一层递归的信息,如果递归没有终止,操作系统的内存栈必然就会溢出。

  3. 「确定单层递归的逻辑:」确定每一层递归需要处理的信息。在这里也就会重复调用自己来实现递归的过程

二叉树节点的定义框架:

struct TreeNode {
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};

二叉树相关的题目永远都逃不开树的递归遍历框架:

/*二叉树的遍历框架*/
void traverse(TreeNode root)
{
    //前序遍历:先访问根节点,再前序访问左子树,再访问右子树
    traverse(root->left);
    //中序遍历:先中序访问左子树,再访问根节点,再访问右子树
    traverse(root->right);
    //后续遍历:先后续访问左子树,再访问右子树,再访问根节点
}

快速排序其实就是二叉树的前序遍历。

快速排序的逻辑是,需要对一个数组进行排序,我知道数组的首地址,知道首元素和最后一个元素的下标,然后我就先找一个分界点p,通过交换元素使得分界点p左边的值都比p小,右边的都比p大,然后递归的去这样做,最后整个数组就被排序了。这里需要知道的是,分界点p是数组的下标,怎么得到呢,我们在执行“分”的这个操作的时候,是先选取了一个基准值,一般选的是数组最后一个元素,当然优化的方式更好是随机选择的,选好基准值后,通过循环判断将比基准值小的都往左边放,最后将基准值放到数组合适的位置,这个位置的下标就是分界点p了。得到p之后,递归的对p左边的子数组和p右边的子数组进行排序,传入的参数是数组的首地址,子数组的首元素和尾元素下标,这个根据p得到。

代码框架如下:

void sort(vector<int>& nums, int lo, int hi)
{
    /*前序遍历位置*/
    //通过交换元素构建分界点p
    int p = partition(nums, lo, hi);
    /***********************/
    sort(nums, lo, p - 1);
    sort(nums, p + 1, hi);
}

归并排序其实就是二叉树的后序遍历。

归并排序的逻辑是,需要对一个数组进行排序,我知道数组的首地址,知道首元素和最后一个元素的下标,然后我将数组一分为二,分别对左右子数组进行排序,所以应该先求一个mid,以便于将数组通过下标分开,然后递归进行左右子数组排序,最后,将这两个有序数组进行合并,整个数组就排好了,合并的时候,是将两个有序的子数组合并起来,需要将两个数组从头开始比较元素,构建一个新的容器暂存有序的数组,一直保持将小的先放进去的原则,放完之后,肯定有一个子数组完全放进去了,还有一个是没有的,所以需要进行判断,将剩下的放进去。

代码框架如下:

void sort(vector<int>& nums, int lo, int hi)
{
    int mid = (lo + hi) / 2;
    sort(nums, lo, mid - 1);
    sort(nums, mid + 1, hi);

    /*后序遍历位置*/
    //合并两个排好序的子数组
    merge(nums, lo, mid, hi);
    /*****************/
}

写递归算法的秘诀:关键是要明确函数的定义是什么,然后相信这个定义,利用这个定义推到最终的结果,千万不能跳进递归的细节。

关于二叉树的题目基本都是用递归很容易解决,问题是,你要搞清楚,这个题目当中,相当于让每个节点干什么事情。

二叉树的前序遍历:迭代和递归

class Solution {
public:
    //vector result;//递归的话定义在这里
    vector<int> preorderTraversal(TreeNode* root) {
        //递归方式
        /*
        if(root == nullptr)
            return {};
        result.push_back(root->val);
        preorderTraversal(root->left);
        preorderTraversal(root->right);
        return result;
        */
        //当然可以使用迭代解法,因为递归本身就是用栈来实现的,可以通过栈来迭代操作
        //但是要注意栈的特性是后入先出,前序的话,就是先放入根节点赋值操作弹出,再放入右节点、左节点,再弹出,这样左节点就会先出,先赋值操作,就是前序了
        stack sta;
        vector<int> result;
        sta.push(root);
        while(!sta.empty()) {
            int size = sta.size();
            for(int i=0; i) {
                TreeNode* node = sta.top();
                sta.pop();
                result.push_back(node->val);
                if(node->right)
                    sta.push(node->right);
                if(node->left)
                    sta.push(node->left);
            }
        }
        return result;
    }
};

二叉树的后序遍历:迭代和递归

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    //vector result;//递归解法定义在这里
    vector<int> postorderTraversal(TreeNode* root) {
        /*
        if(root == nullptr)
            return {};
        postorderTraversal(root->left);
        postorderTraversal(root->right);
        result.push_back(root->val);
        return result;
        */
        //本题还可以采用迭代解法,因为递归就是用栈来实现的
        //考虑实现的过程
        //后序遍历是左右中的顺序,但是我们在迭代的时候肯定会先访问根节点,也就是中间的节点,所以考虑先访问和处理中间节点,再处理右节点,再处理左边节点,最后将结果翻转就行了
        stack sta;
        vector<int> result;
        sta.push(root);
        while(!sta.empty()) {
            int size = sta.size();
            for(int i=0; i) {
                TreeNode* node = sta.top();
                sta.pop();
                result.push_back(node->val);
                if(node->left)
                    sta.push(node->left);
                if(node->right)
                    sta.push(node->right);
            }
        }
        reverse(result.begin(), result.end());
        return result;
    }
};

 二叉树的中序遍历

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    //vectorresult;//递归写法这里定义
    vector<int> inorderTraversal(TreeNode* root) {
        /*递归解法
        if(root == nullptr)
            return {};
        inorderTraversal(root->left);
        result.push_back(root->val);
        inorderTraversal(root->right);
        return result;
        */
        //还能采用迭代解法,用栈来解决,因为递归本身就是用栈来实现的,因此是完全行得通的
        //中序的顺序是左中右,那出栈的时候,处理的顺序肯定是右中左
        //搞清楚访问和处理的概念
        //访问:将节点入栈
        //处理:将节点的值放入结果集
        //中序的访问和处理的顺序是不一样的,所以要借助指针进行访问,也就是将节点放入栈中,用栈来做处理,也就是放入结果集
        vector<int> result;
        stack sta;
        TreeNode* cur = root;
        while(cur != nullptr || !sta.empty()) {
            if(cur != nullptr) {//指针用来访问节点,访问到左边最底层的时候,指针和要开始处理的位置就一样了
                sta.push(cur);//将访问的节点放进栈
                cur = cur->left;//最左的子节点最后放进去,所以会先出栈    左
            }
            else {
                cur = sta.top();
                sta.pop();
                result.push_back(cur->val);                             //
                cur = cur->right;                                       //
            }
        }
    }
};

“二叉树”相关题目

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    vectorint>> levelOrder(TreeNode* root) {
        queue que;//创建一个队列,层序遍历树的需要用队列来实现,队列中是二叉树的节点
        if(root != nullptr)
            que.push(root);//如果头结点不为空的话,先将头结点放到队列中,因为头结点也就是第一行,只有这一个元素,所以直接放进去
        vectorint>> result;//定义返回值,返回的是一个二维数组
        while(!que.empty()) {
            int size = que.size();//同一行可能不止一个元素,要循环都进行遍历,又因为下面要进行pop操作,que.size()是一个变化的值,所以这里存储数量
            vector<int> vec;//用于临时存储每一行的节点值,最后统一存入返回的二维数组中
            for(int i=0; i) {
                TreeNode* node = que.front();
                que.pop();//
                vec.push_back(node->val);
                if(node->left)
                    que.push(node->left);//将这个节点的左右子节点放入队列中
                if(node->right)
                    que.push(node->right);
            }
            result.push_back(vec);
        }
        return result;
    }
};

掌握了层序遍历的模板,别的题只要稍微改动几行代码就可以解决了。

遇到二叉树的题目,一定要想一想到底是用深度优先遍历还是广度优先遍历,到底使用迭代法还是用递归法。

遇到求二叉树节点的数量以及求二叉树的深度相关的题目,使用迭代和递归方法均可,关键是要自动向下对问题进行分析。

226.翻转二叉树

“二叉树”相关题目

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    TreeNode* invertTree(TreeNode* root) {
        //通过分析,得到了题意是:将每个节点的左右子节点进行翻转就可以了,前序和后序的方式都行
        //不能使用中序的原因是某些节点可能会被翻转两次
        /*
        if(root == NULL)
            return root;
        swap(root->left, root->right);
        invertTree(root->left);
        invertTree(root->right);
        return root;
        */
        //以上是递归写法,这道题还可以有迭代写法,反正知道了题意就是将每个节点的左右子节点进行互换就可以了,可以遍历每个节点进行操作
        /*
        if(root == NULL)
            return root;
        stack st;
        st.push(root);
        while(!st.empty()) {
            TreeNode* node = st.top();
            st.pop();
            swap(node->left, node->right);
            if(node->right)
                st.push(node->right);
            if(node->left)
                st.push(node->left);
        }
        return root;
        */
        //以上是深度优先遍历当中的前序迭代写法,还可以采用层序遍历
        if(root == NULL)
            return root;
        queue que;
        que.push(root);
        while(!que.empty()) {
            int size = que.size();
            for(int i=0; i) {
                TreeNode* node = que.front();
                que.pop();
                swap(node->left, node->right);
                if(node->left)
                    que.push(node->left);
                if(node->right)
                    que.push(node->right);
            }
        }
        return root;
    }
};

114.二叉树展开为链表

“二叉树”相关题目

 

 

 

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    void flatten(TreeNode* root) {
        //后序遍历:在还没操作节点右子树前,不能破坏该节点的右子树指向
        if(root == nullptr)
            return;
        flatten(root->left);
        flatten(root->right);
        //左右子树已经被拉平成一条链表,需要将左子树变成右子树,将原来的右子树节点接到后面
        TreeNode* left = root->left;
        TreeNode* right = root->right;
        root->left = nullptr;
        root->right = left;
        TreeNode* p = root;
        while(p->right != nullptr)
        {
            p = p->right;
        }
        p->right = right;
    }
};

“二叉树”相关题目

 

 

 

/*
// Definition for a Node.
class Node {
public:
    int val;
    Node* left;
    Node* right;
    Node* next;

    Node() : val(0), left(NULL), right(NULL), next(NULL) {}

    Node(int _val) : val(_val), left(NULL), right(NULL), next(NULL) {}

    Node(int _val, Node* _left, Node* _right, Node* _next)
        : val(_val), left(_left), right(_right), next(_next) {}
};
*/

class Solution {
public:
    Node* connect(Node* root) {
        if(root == nullptr)
            return nullptr;
        connectTwoNode(root->left, root->right);
        return root;
    }
    void connectTwoNode(Node* node1, Node* node2)
    {
        if(node1 == nullptr || node2 == nullptr)
            return;//不操作
        node1->next = node2;
        connectTwoNode(node1->left, node1->right);
        connectTwoNode(node2->left, node2->right);
        connectTwoNode(node1->right, node2->left);
    }
};

“二叉树”相关题目

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    TreeNode* constructMaximumBinaryTree(vector<int>& nums) {
        //肯定是需要先知道这个最大值,构造根节点,然后递归的构造左右子树,采用前序遍历框架
        //需要知道子数组,所以函数的参数不够,需要自己构造函数,传入数组、子数组头尾下标
        return build(nums, 0, nums.size()-1);
    }
    TreeNode* build(vector<int>& nums, int lo, int hi)
    {
        if(lo > hi)
            return nullptr;
            
        /*下面这一段是求最大值和最大值索引的,时间复杂度为O(n)*/
        int max_num = nums.at(0);
        int index = 0;
        for(int i=0;i<=hi;i++)
        {
            if(max_num < nums.at(i))
            {
                max_num = nums.at(i);
                index = i;
            }
        }
        /*****************************/

        TreeNode* head = new TreeNode(max_num);
        head->left = build(nums, 0, index);
        head->right = build(nums, index+1, hi);
        return head;
    }
};

“二叉树”相关题目

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
        //要先明白,构造一颗二叉树,首先你得构造出根节点吧,然后你再去构造左右子节点
        //根节点简单,就是前序遍历的第一个元素,很容易能够构造
        //关键是你要构造左右子节点以及往下的,你得知道哪些元素是左子树哪些是右子树的,这就需要通过中序序列和已知的根节点的值来确定,这是中序的特性
        return build(preorder, 0, preorder.size()-1, inorder, 0, inorder.size()-1);
    }
    TreeNode* build(vector<int> preorder, int prestart, int preend, vector<int> inorder, int instart, int inend)
    {
        if(prestart > preend)
            return nullptr;
        //先保存根节点的值,找到中序序列中根节点的位置
        int rootval = preorder.at(prestart);
        int index = 0;
        for(int i=instart;i<=inend;i++)
        {
            if(inorder.at(i) == rootval)
            {
                index = i;
                break;
            }
        }
        //以上找到了中序序列中根节点的位置index
        int leftSize = index - instart;//得到左子树节点的个数,因为要分开前序遍历序列
        //先构造根节点
        TreeNode* root = new TreeNode(rootval);
        //递归构造
        root->left = build(preorder, prestart+1, index+leftSize, inorder, instart, index-1);
        root->right = build(preorder, prestart+leftSize+1, preend, inorder, index+1, inend);
        return root;
    }
};

“二叉树”相关题目

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
        //后序和中序跟前一个一样的道理,还是应该先构造头结点,然后递归构造左右子树
        //需要新建一个函数进行数组起止位置控制,别的也没什么
        //后序最后一个是根节点的值
        return build(inorder, 0, inorder.size()-1, postorder, 0, postorder.size()-1);
    }
    TreeNode* build(vector<int>& inorder, int inStart, int inEnd, vector<int>& postorder, int postStart, int postEnd)
    {
        //base case
        if(inStart > inEnd)
            return nullptr;
        //先保存根节点的值
        int rootVal = postorder.at(postEnd);
        int index = 0;//记录中序序列中根节点的位置
        for(int i=inStart;i<=inEnd;i++)
        {
            if(inorder.at(i) == rootVal)
            {
                index = i;
                break;
            }
        }
        int leftSize = index - inStart;
        //构造根节点
        TreeNode* root = new TreeNode(rootVal);
        //递归构造左右子树
        root->left = build(inorder, inStart, index-1, postorder, postStart, postStart+leftSize-1);
        root->right = build(inorder, index+1, inEnd, postorder, postStart+leftSize, postEnd-1);
        return root;
    }
};

“二叉树”相关题目

 

 

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    bool isSubStructure(TreeNode* A, TreeNode* B) {
        //第一步:在树A中找到和树B的根节点一样的节点R
        //第二步:判断树A中以R为根节点的子树是不是包含和树B一样的结构
        bool result = false;
        if(A != nullptr && B != nullptr)//只有两个都不空才去判断
        {
            if(equal(A->val, B->val))
            {
                //如果找到了跟B节点的根节点一样的节点,就去判断第二步
                result = doesTree1HaveTree2(A, B);
            }
            if(!result)
            {
                //如果当前节点跟B根节点不一样,就去递归判断当前节点的左节点
                result = isSubStructure(A->left, B);
            }
            if(!result)
            {
                //如果当前节点跟B根节点不一样,就去递归判断当前节点的右节点
                result = isSubStructure(A->right, B);
            }
        }
        return result;

    }
    bool doesTree1HaveTree2(TreeNode* pRoot1, TreeNode* pRoot2)
    {
        if(pRoot2 == nullptr)
        {
            return true;
        }
        if(pRoot1 == nullptr)
        {
            return false;
        }
        if(!equal(pRoot1->val, pRoot2->val))
        {
            return false; 
        }
        return doesTree1HaveTree2(pRoot1->left, pRoot2->left) && doesTree1HaveTree2(pRoot1->right, pRoot2->right);//判断子树是不是一样的
    }

    bool equal(double b1, double b2)//定义double类型是不是相等的判断
    {
        if(b1-b2<0.0000001 && b1-b2>-0.0000001)
            return true;
        else
            return false;
    }
};

 “二叉树”相关题目

 

 (1)有一道求二叉树深度的题目,那个题目写的求深度的算法可以应用到这道题目里,思路就是,求得每一个结点的左右子节点的深度,判断相差不超过1,则是平衡二叉树

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    bool isBalanced(TreeNode* root) {
        if(root == nullptr)
            return true;
        //分别得到左右深度
        int left = maxDepth(root->left);
        int right = maxDepth(root->right);
        if(left-right<-1 && left-right>1)
            return false;
        return isBalanced(root->left) && isBalanced(root->right);
    }
    int maxDepth(TreeNode* pRoot)
    {
        //求以pRoot为根节点的二叉树深度
        if(pRoot == nullptr)
            return 0;
        int left = maxDepth(pRoot->left);
        int right = maxDepth(pRoot->right);
        return left>right? (left+1) : (right+1);
    }
};

(2)每个节点只遍历一次的做法

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    bool isBalanced(TreeNode* root) {
        //用后序遍历的方式,遍历到一个节点之前我们就已经遍历了它的左右子树。在遍历每个节点的时候记录它的深度
        int pDepth;
        return itIsBalanced(root, &pDepth);
    }
    bool itIsBalanced(TreeNode* pRoot, int* pDepth)
    {
        if(pRoot == nullptr)
        {
            *pDepth = 0;
            return true;
        }
        int left, right;
        if(itIsBalanced(pRoot->left, &left) && itIsBalanced(pRoot->right, &right))//判断当前节点的左右子节点为根节点的树是不是平衡的
        {
            int diff = left - right;
            if(diff<=1 && diff>=-1)//判断当前节点为根节点的二叉树是不是平衡的
            {
                *pDepth = 1 + (left>right ? left : right);
                return true;
                //如果子节点为根节点的是平衡的,当前节点为根节点的是平衡的,整个就是平衡的
            }
        }
        return false;
    }
};

 “二叉树”相关题目

 

 

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    int kthSmallest(TreeNode* root, int k) {
        //后序遍历,二叉搜索树的后序遍历是有序的
        traverse(root, k);
        return res;
    }
    int res = 0;//记录结果
    int rank = 0;//记录当前元素的位置排序
    void traverse(TreeNod* root, int k)
    {
        if(root == nullptr)
            return;
        traverse(root->left, k);
        rank++;
        if(k == rank)
        {
            res = root->val;
            return;
        }
        traverse(root->right, k);
    }
};

“二叉树”相关题目

 

 

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    TreeNode* convertBST(TreeNode* root) {
        traverse(root);
        return root;
    }
    //记录累加和
    int sum = 0;
    void traverse(TreeNode* root)
    {
        if(root == nullptr)
            return;
        traverse(root->right);
        //维护累加和
        sum += root->val;
        //将BST转化成累加树
        root->val = sum;
        traverse(root->left);
    }
};

“二叉树”相关题目

 


推荐阅读
  • 本文讨论了使用差分约束系统求解House Man跳跃问题的思路与方法。给定一组不同高度,要求从最低点跳跃到最高点,每次跳跃的距离不超过D,并且不能改变给定的顺序。通过建立差分约束系统,将问题转化为图的建立和查询距离的问题。文章详细介绍了建立约束条件的方法,并使用SPFA算法判环并输出结果。同时还讨论了建边方向和跳跃顺序的关系。 ... [详细]
  • 云原生边缘计算之KubeEdge简介及功能特点
    本文介绍了云原生边缘计算中的KubeEdge系统,该系统是一个开源系统,用于将容器化应用程序编排功能扩展到Edge的主机。它基于Kubernetes构建,并为网络应用程序提供基础架构支持。同时,KubeEdge具有离线模式、基于Kubernetes的节点、群集、应用程序和设备管理、资源优化等特点。此外,KubeEdge还支持跨平台工作,在私有、公共和混合云中都可以运行。同时,KubeEdge还提供数据管理和数据分析管道引擎的支持。最后,本文还介绍了KubeEdge系统生成证书的方法。 ... [详细]
  • 李逍遥寻找仙药的迷阵之旅
    本文讲述了少年李逍遥为了救治婶婶的病情,前往仙灵岛寻找仙药的故事。他需要穿越一个由M×N个方格组成的迷阵,有些方格内有怪物,有些方格是安全的。李逍遥需要避开有怪物的方格,并经过最少的方格,找到仙药。在寻找的过程中,他还会遇到神秘人物。本文提供了一个迷阵样例及李逍遥找到仙药的路线。 ... [详细]
  • 本文介绍了Codeforces Round #321 (Div. 2)比赛中的问题Kefa and Dishes,通过状压和spfa算法解决了这个问题。给定一个有向图,求在不超过m步的情况下,能获得的最大权值和。点不能重复走。文章详细介绍了问题的题意、解题思路和代码实现。 ... [详细]
  • 本文介绍了使用Spark实现低配版高斯朴素贝叶斯模型的原因和原理。随着数据量的增大,单机上运行高斯朴素贝叶斯模型会变得很慢,因此考虑使用Spark来加速运行。然而,Spark的MLlib并没有实现高斯朴素贝叶斯模型,因此需要自己动手实现。文章还介绍了朴素贝叶斯的原理和公式,并对具有多个特征和类别的模型进行了讨论。最后,作者总结了实现低配版高斯朴素贝叶斯模型的步骤。 ... [详细]
  • STL迭代器的种类及其功能介绍
    本文介绍了标准模板库(STL)定义的五种迭代器的种类和功能。通过图表展示了这几种迭代器之间的关系,并详细描述了各个迭代器的功能和使用方法。其中,输入迭代器用于从容器中读取元素,输出迭代器用于向容器中写入元素,正向迭代器是输入迭代器和输出迭代器的组合。本文的目的是帮助读者更好地理解STL迭代器的使用方法和特点。 ... [详细]
  • IhaveconfiguredanactionforaremotenotificationwhenitarrivestomyiOsapp.Iwanttwodiff ... [详细]
  • LeetCode笔记:剑指Offer 41. 数据流中的中位数(Java、堆、优先队列、知识点)
    本文介绍了LeetCode剑指Offer 41题的解题思路和代码实现,主要涉及了Java中的优先队列和堆排序的知识点。优先队列是Queue接口的实现,可以对其中的元素进行排序,采用小顶堆的方式进行排序。本文还介绍了Java中queue的offer、poll、add、remove、element、peek等方法的区别和用法。 ... [详细]
  • 本文介绍了解决二叉树层序创建问题的方法。通过使用队列结构体和二叉树结构体,实现了入队和出队操作,并提供了判断队列是否为空的函数。详细介绍了解决该问题的步骤和流程。 ... [详细]
  • WebSocket与Socket.io的理解
    WebSocketprotocol是HTML5一种新的协议。它的最大特点就是,服务器可以主动向客户端推送信息,客户端也可以主动向服务器发送信息,是真正的双向平等对话,属于服务器推送 ... [详细]
  • 本文讨论了如何使用IF函数从基于有限输入列表的有限输出列表中获取输出,并提出了是否有更快/更有效的执行代码的方法。作者希望了解是否有办法缩短代码,并从自我开发的角度来看是否有更好的方法。提供的代码可以按原样工作,但作者想知道是否有更好的方法来执行这样的任务。 ... [详细]
  • 本文讨论了一个数列求和问题,该数列按照一定规律生成。通过观察数列的规律,我们可以得出求解该问题的算法。具体算法为计算前n项i*f[i]的和,其中f[i]表示数列中有i个数字。根据参考的思路,我们可以将算法的时间复杂度控制在O(n),即计算到5e5即可满足1e9的要求。 ... [详细]
  • 本文讨论了编写可保护的代码的重要性,包括提高代码的可读性、可调试性和直观性。同时介绍了优化代码的方法,如代码格式化、解释函数和提炼函数等。还提到了一些常见的坏代码味道,如不规范的命名、重复代码、过长的函数和参数列表等。最后,介绍了如何处理数据泥团和进行函数重构,以提高代码质量和可维护性。 ... [详细]
  • GreenDAO快速入门
    前言之前在自己做项目的时候,用到了GreenDAO数据库,其实对于数据库辅助工具库从OrmLite,到litePal再到GreenDAO,总是在不停的切换,但是没有真正去了解他们的 ... [详细]
  • GPT-3发布,动动手指就能自动生成代码的神器来了!
    近日,OpenAI发布了最新的NLP模型GPT-3,该模型在GitHub趋势榜上名列前茅。GPT-3使用的数据集容量达到45TB,参数个数高达1750亿,训练好的模型需要700G的硬盘空间来存储。一位开发者根据GPT-3模型上线了一个名为debuid的网站,用户只需用英语描述需求,前端代码就能自动生成。这个神奇的功能让许多程序员感到惊讶。去年,OpenAI在与世界冠军OG战队的表演赛中展示了他们的强化学习模型,在限定条件下以2:0完胜人类冠军。 ... [详细]
author-avatar
邓世璇_664_425
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有